995 resultados para NEURAL CREST


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Band 4.1B is a cytoskeletal adaptor protein that regulates various cellular behavior; however, the mechanisms by which Band 4.1B contributes to intracellular signaling are unclear. This project addresses in vivo and in vitro functions for Band 4.1B in integrin-mediated cell adhesion and signaling. Band 4.1B has been shown to bind to β8 integrin, although cooperative functions of these two proteins have not been determined. Here, functional links between β8 integrin and Band 4.1B were investigated using gene knockout strategies. Ablation of β8 integrin and Band 4.1B genes resulted in impaired cardiac morphogenesis, leading to embryonic lethality by E11.5. These embryos displayed malformation of the outflow tract that was likely linked to abnormal regulation of cardiac neural crest migration. These data indicate the importance of cooperative signaling between β8 integrin and Band 4.1B in cardiac development. The involvement of Band 4.1B in integrin-mediated cell adhesion and signaling was further demonstrated by studying its functional roles in vitro. Band 4.1B is highly expressed in the brain, but its signaling in astrocytes is not understood. Here, Band 4.1B was shown to promote cell spreading likely by interacting with β1 integrin via its band 4.1, ezrin, radixin, and moesin (FERM) domain in cell adhesions. In astrocytes, both Band 4.1B and β1 integrin were expressed in cell-ECM contact sites during early cell spreading. Exogenous expression of Band 4.1B, especially its FERM domain, enhanced cell spreading on fibronectin, an ECM ligand for β1 integrin. However, the increased cell spreading was prohibited by blocking β1 integrin. These findings suggest that Band 4.1B is crucial for early adhesion assembly and/or signaling that are mediated by β1 integrin. Collectively, this study was the first to establish Band 4.1B as a modulator of integrin-mediated adhesion and signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Delineating the mechanism(s) of BDNF/TrkB mediated proliferation in Neuroblastoma Timothy Christopher Graham, B.S. Supervisory Professor: Patrick Zweidler-McKay, MD/PhD Neuroblastoma is the most common extra-cranial solid tumor in children, arising from neural crest precursor cells. The neurotrophin receptors (TrkA/B/C) have been implicated as important prognostic markers, linking the biology of the tumor to patient outcome. High expression of TrkA and TrkC receptors have been linked to favorable biological features and high patient survival, while TrkB is expressed in unfavorable, aggressive tumors. Several studies suggest that high levels and activation of TrkB by its ligand brain-derived neurotrophic factor (BDNF) stimulates tumor cell survival, proliferation, and chemoresistance. However, little is known about the molecular mechanisms that regulate proliferation. The TrkB signaling pathway in neuroblastoma cells has been difficult to evaluate due to the loss of TrkB expression when the cells are used in vitro. Here we determined the role of proximal signaling pathways downstream of TrkB on neuroblastoma proliferation. By analyzing a panel of neuroblastoma cell lines, we found that the SMS-KCN cells express detectable levels of protein and mRNA levels of TrkB as analyzed by western, RT-PCR, and surface expression by flow cytometry. By the addition of exogenous human recombinant BDNF, we showed that activation of TrkB is important in the proliferation of the cells and can be repressed by inhibiting TrkB kinase function. By BDNF stimulation and use of specific kinase inhibitors, the common pathways involving PLCg, PI3K/AKT, and MAPK were initially investigated in addition to PI3K/MTOR and FYN pathways. We demonstrate for the first time that Fyn plays a critical role in TrkB mediated proliferation in neuroblastoma. Constitutively active and over-expressed Fyn reduced neuroblastoma proliferation, as measured by PCNA expression. Knockdown of Fyn by shRNA was shown to cooperate with activated TrkB for an enhanced proliferative response. Although TrkB activation has been implicated in the proliferation of neuroblastoma cells, little is known about its effects on cell cycle regulation. Protein levels of pRB, CDK2, CDK4, CDC25A, cyclin D1, and cyclin E were analyzed following BDNF stimulation. We found that BDNF mediated activation of TrkB induces multiple common proximal signaling pathways including the anti-proliferative Fyn pathway and drives cell cycle machinery to enhance the proliferation of neuroblastoma cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (NSCLP), a common, complex orofacial birth defect that affects approximately 4,000 newborns each year in the United States, is caused by both genetic and environmental factors. Orofacial clefts affect the mouth and nose, causing severe deformity of the face, which require medical, dental and speech therapies. Despite having substantial genetic liability, less than 25% of the genetic contribute to NSCLP has been identified. The studies described in this thesis were performed to identify genes that contribute to NSCLP and to demonstrate the role of these genes in normal craniofacial development. Using genome scan and candidate gene approaches, novel associations with NSCLP were identified. These include MYH9 (7 SNPs, 0.009≤p<0.05), Wnt3A (4 SNPs, 0.001≤p≤0.005), Wnt11 (2 SNPs, 0.001≤p≤0.01) and CRISPLD2 (4 SNPs, 0.001≤p<0.05). The most interesting findings were for CRISPLD2. This gene is expressed in the fused mouse palate at E17.5. In zebrafish, crispld2 localized to the craniofacial region by one day post fertilization. Morpholino knockdown of crispld2 resulted in a lower survival rates and altered neural crest cell (NCC) clustering. Because NCCs form the tissues that populate the craniofacies, this NCC abnormality resulted in cartilage abnormalities of the jaw including fewer ceratobranchial cartilages forming the lower jaw (three pairs compared to five) and broader craniofacies compared to wild-type zebrafish. These findings suggest that the CRISPLD2 gene plays an important role in normal craniofacial development and perturbation of this gene in humans contributes to orofacial clefting. Overall, these results are important because they contribute to our understanding of normal craniofacial development and orofacial clefting etiology, information that can be used to develop better methods to diagnose, counsel and potentially treat NSCLP patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes thymus organogenesis Kim T. Cardenas The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, which in turn is positively regulated by Shh. Although initially expressed throughout pharyngeal pouch endoderm, Tbx1 expression is excluded from the thymus-specific domain of the 3rd PP by E10.5, but persists in the parathyroid domain. Based on these observations, we hypothesized that Tbx1 expression is non-permissive for thymus fate specification and that enforced expression of Tbx1 in the fetal thymus would impair thymus development. To test this hypothesis, we generated knock-in mice containing a Cre-inducible allele that allows for tissue-specific Tbx1 expression. Expression of the R26iTbx1 allele in fetal and adult thymus using Foxn1Cre resulted in severe thymus hypoplasia throughout ontogeny that persisted in the adult. Thymic epithelial cell (TEC) development was impaired as determined by immunohistochemical and FACS analysis of various differentiation markers. The relative level of Foxn1 expression in fetal TECs was significantly reduced. TECs in R26iTbx1/+ thymi assumed an almost universal expression of Plet-1, a marker associated with a TEC stem/progenitor cell fate. In addition, embryonic R26iTbx1/+ mice develop a perithymic mesechymal capsule that appears expanded compared to control littermates. Interestingly, thymi from neonatal and adult R26iTbx1/+ but not R26+/+ mice were encased in adipose tissue. This thymic phenotype also correlated with a decrease in thymocyte cellularity and aberrant thymocyte differentiation. The results to date support the conclusion that enforced expression of Tbx1 in TECs antagonizes their differentiation and prevents normal organogenesis via both direct and indirect effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aniridia (AN) is a congenital, panocular disorder of the eye characterized by the complete or partial absence of the iris. The disease can occur in both the sporadic and familial forms which, in the latter case, is inherited as an autosomal dominant trait with high penetrance. The objective of this study was to isolate and characterize the genes involved in AN and Sey, and thereby to gain a better understanding of the molecular basis of the two disorders.^ Using a positional cloning strategy, I have approached and cloned from the AN locus in human chromosomal band 11p13 a cDNA that is deleted in two patients with AN. The deletions in these patients overlap by about 70 kb and encompass the 3$\sp\prime$ end of the cDNA. This cDNA detects a 2.7 kb mRNA encoded by a transcription unit estimated to span approximately 50 kb of genomic DNA. The message is specifically expressed in all tissues affected in all forms of AN, namely within the presumptive iris, lens, neuroretina, the superficial layers of the cornea, the olfactory bulbs, and the cerebellum. Sequence analysis of the AN cDNA revealed a number of motifs characteristic of certain transcription factors. Chief among these are the presence of the paired domain, the homeodomain, and a carboxy-terminal domain rich in serine, threonine and proline residues. The overall structure shows high homology to the Drosophila segmentation gene paired and members of the murine Pax family of developmental control genes.^ Utilizing a conserved human genomic DNA sequence as probe, I was able to isolate an embryonic murine cDNA which is over 92% homologous in nucleotide sequence and virtually identical at the amino acid level to the human AN cDNA. The expression pattern of the murine gene is the same as that in man, supporting the conclusion that it probably corresponds to the Sey gene. Its specific expression in the neuroectodermal component of the eye, in glioblastomas, but not in the neural crest-derived PC12 pheochromocytoma cell line, suggests that a defect in neuroectodermal rather mesodermal development might be the common etiological factor underlying AN and Sey. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of cartilage and bone involves sequential processes in which undifferentiated mesenchyme aggregates into primordial condensations which subsequently grow and differentiate, resulting in morphogenesis of the adult skeleton. While much has been learned about the structural molecules which comprise cartilage and bone, little is known about the nuclear factors which regulate chondrogenesis and osteogenesis. MHox is a homeobox-containing gene which is expressed in the mesenchyme of facial, limb, and vertebral skeletal precursors during mouse embryogenesis. MHox expression has been shown to require epithelial-derived signals, suggesting that MHox may regulate the epithelial-mesenchymal interactions required for skeletal organogenesis. To determine the functions of MHox, we generated a loss-of-function mutation in the MHox gene. Mice homozygous for a mutant MHox allele exhibit defects of skeletogenesis, involving the loss or malformation of craniofacial, limb and vertebral skeletal structures. The affected skeletal elements are derived from the cranial neural crest, as well as somitic and lateral mesoderm. Analysis of the mutant phenotype during ontogeny demonstrated a defect in the formation or growth of chondrogenic and osteogenic precursors. These findings provide evidence that MHox regulates the formation of preskeletal condensations from undifferentiated mesenchyme. In addition, generation of mice doubly mutant for the MHox and S8 homeobox genes reveal that these two genes interact to control formation of the limb and craniofacial skeleton. Mice carrying mutant alleles for S8 and MHox exhibit an exaggeration of the craniofacial and limb phenotypes observed in the MHox mutant mouse. Thus, MHox and S8 are components of a combinatorial genetic code controlling generation of the skeleton of the skull and limbs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heart is the first organ to form in vertebrates during embryogenesis, and its circulatory function is essential to embryonic survival. Cardiac morphogenesis comprises a complex series of interactions involving cells from several embryonic origins. These cell-cell interactions are regulated temporally and spatially by programs of inductive signaling events, including BMP signaling transduced by Smads and left-right asymmetry signaling mediated by Pitx2. Disruptions of BMP signaling and left-right asymmetry signaling result in abnormal cardiac morphogenesis that causes congenital heart disease in humans. In this study, conventional and conditional gene targeting approaches were employed to dissect the functions of Smad8 and Smad1, intracellular BMP signaling transducers, and Pitx2, a direct target of left-right signaling, in cardiac development. We generated the Smad8mt mutant allele and the Smad8lacZ knock-in allele. Smad8 homozygous mutant mice were viable and fertile without obvious abnormalities. The Smad8lacZ knock-in allele showed that Smad8 was expressed in the myocardium of cardiac outflow tract and atrioventricular cushions. We did not find defects in these Smad8-expressing cardiac regions in Smad8mt/mt and Smad8lacZ/lacZ mutants, indicating that Smad8 is dispensable for cardiac development. Conditional knockout of Smad1 using the Nkx2.5Cre allele in cardiac mesoderm resulted in partial inactivation of Smad1 in the myocardium and complete deletion of Smad1 in the epicardium, and caused ventricular hypoplasia featured with a thinner compact zone, suggesting that Smad1 signaling in the epicardium is required for myocardial morphogenesis in ventricles. Previous data have shown that Pitx2 null mutants exhibit defects in the cardiac outflow tract, a region populated with cells from the cardiac mesoderm and the cardiac neural crest. We found that the cardiac neural crest normally populated into the outflow tract in Pitx2 null mutant. Moreover, specific deletion of Pitx2 in the neural crest resulted in normal heart formation. Deletion of Pitx2 in the cardiac mesoderm caused defective outflow tract, revealing that the function of Pitx2 in the cardiac outflow tract resides in splanchnic and branchial arch mesoderm, and is independent of cardiac neural crest cells. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fundamental task in developmental biology is to understand the molecular mechanisms governing early embryogenesis. The aim of this study was to understand the developmental role of a putative basic helix-loop-helix (b-HLH) transcription factor, twist, during mouse embryogenesis.^ twist was originally identified in Drosophila as one of the zygotic genes, including snail, that were required for dorsal-ventral patterning. In Drosophila embryogenesis, twist is expressed in the cells of the ventral midline destined to form mesoderm. In embryos lacking twist expression, their ventral cells fail to form a ventral furrow and subsequently no mesoderm is formed.^ During mouse embryogenesis, twist is expressed after initial mesoderm formation in both mesoderm and cranial neural crest cell derivatives. To study the role of twist in vivo, twist-null embryos were generated by gene targeting. Embryos homozygous for the twist mutation die at midgestation. The most prominent phenotype in the present study was a failure of the cranial neural tube to close (exencephaly). twist-null embryos also showed defects in head mesenchyme, branchial arches, somites, and limb buds.^ To understand whether twist functions cell-autonomously and to investigate how twist-null cells interact with wild-type cells in vivo, twist chimeras composed of both twist-null and wild-type cells marked by the expression of the lacZgene were generated. Chimeric analysis revealed a correlation between the incidence of exencephaly and the contribution of the underlying twist-null head mesenchyme, thus strongly suggesting that twist-expressing head mesenchyme is required for the closure of the cranial neural tube. These studies have identified twist as a critical regulator for the mesenchymal fate determination within the cranial neural crest lineage. Most strikingly, twist-null head mesenchyme cells were always segregated from wild-type cells, indicating that the twist mutation altered the adhesive specificity of these cells. Furthermore, these results also indicated that twist functions cell-autonomously in the head, arch, and limb mesenchyme but non-cell-autonomously in the somites. Taken together, these studies have established the essential role of twist during mouse embryogenesis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pitx2, a paired-related homeobox gene that is mutated in human Rieger Syndrome, plays a key role in transferring the early asymmetric signals to individual organs. Pitx2 encodes three isoforms, Pitx2a, Pitx2b and Pitx2c. I found that Pitx2c was the Pitx2 isoform for regulating left-right asymmetry in heart, lung and the predominant isoform in guts. Previous studies suggested that the generation of left-right asymmetry within individual organs is an all or none, random event. Phenotypic analysis of various Pitx2 allelic combinations, that encode graded levels of Pitx2c, reveals an organ-intrinsic mechanism for regulating left-right asymmetric morphogenesis based on differential response to Pitx2c levels. The heart needs low Pitx2c levels, while the lungs and duodenum require higher doses of Pitx2c. In addition, the duodenal rotation is under strict control of Pitx2c activity. Left-right asymmetry development for aortic arch arteries involves complex vascular remodeling. Left-sided expression of Pitx2c in these developing vessels implied its potential function in this process. In order to determine if Pitx2c also can regulate the left-right asymmetry of the aortic arch arteries, a Pitx2c-specific loss of function mutation is generated. Although in wild type mice, the direction of the aortic arch is always oriented toward the left side, the directions of the aortic arches in the mutants were randomized, showing that Pitx2c also determined the left-right asymmetry of these vessels. I have further showed that the cardiac neural crest wasn't involved in this vascular remodeling process. In addition, all mutant embryos had Double Outlet Right Ventricle (DORV), a common congenital heart disease. This study provided insight into the mechanism of Pitx2c-mediated late stages of left-right asymmetry development and identified the roles of Pitx2c in regulation of aortic arch remodeling and heart development. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A synchronized heart beat is controlled by pacemaking impulses conducted through Purkinje fibers. In chicks, these impulse-conducting cells are recruited during embryogenesis from myocytes in direct association with developing coronary arteries. In culture, the vascular cytokine endothelin converts embryonic myocytes to Purkinje cells, implying that selection of conduction phenotype may be mediated by an instructive cue from arteries. To investigate this hypothesis, coronary arterial development in the chicken embryo was either inhibited by neural crest ablation or activated by ectopic expression of fibroblast growth factor (FGF). Ablation of cardiac neural crest resulted in ≈70% reductions (P < 0.01) in the density of intramural coronary arteries and associated Purkinje fibers. Activation of coronary arterial branching was induced by retrovirus-mediated overexpression of FGF. At sites of FGF-induced hypervascularization, ectopic Purkinje fibers differentiated adjacent to newly induced coronary arteries. Our data indicate the necessity and sufficiency of developing arterial bed for converting a juxtaposed myocyte into a Purkinje fiber cell and provide evidence for an inductive function for arteriogenesis in heart development distinct from its role in establishing coronary blood circulation.