853 resultados para NB-DOPED TIO2
Resumo:
Anelastic relaxation measurements were performed in a Nb-46wt%Ti alloy, in the temperature range of 300 to 700 K, using a torsion pendulum operating at an oscillating frequency near 2.0 Hz. The samples were measured in different conditions: cold worked, annealed in ultra-high vacuum and doped with several quantities of nitrogen. The relaxation spectra obtained were resolved into their component peaks, corresponding to the different kinds of interaction of the interstitial solutes with the metallic matrix. The relaxation parameters of each process were calculated using Debye's elementary peaks.
Resumo:
The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties
Resumo:
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5PbMg(1/3)Nb(2/3)O(3)-0.5Ba(x)Pb((1-x))TiO(3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 mn for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 degrees C for 4 h. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini's method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01-0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01-0.05 mol% of Sb; 3.7 in the range 0.05-0.30 mol% and 1.8 in the range 0.30-0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Internal friction measurements were made in the Nb-Ti alloy containing 0.3 wt. % of Ti, doped with various quantities of oxygen (0.04 to 0.08 wt. %) utilizing a torsion pendulum. These measurements were performed in the temperature range of 300 K to 700 K with the oscillation frequency about 1.0 Hz. The experimental results showed relaxation peaks due the stress induced ordering of oxygen atom and pairs of oxygen atom around the niobium atoms (metallic matrix) and around titanium atoms (substitutional solute).
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
Tin oxide has wakened up great scientific and technological interest for its potential use in varistors production and as gas sensor. In order to improve the microstructural and electrical properties in SnO2 varistor ceramics, the influence of differents dopants used, like TiO2 and Al2O3, is under research. The effect of TiO2 and Al2O3 on the properties of Sn-Co-Nb varistor systems obtained by the Pechini method has been investigated in this work. Characterization of synthesized raw material was performed by X-Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM). The microstructural and electrical characterization of sintered samples show that the TiO2 favors the grain growth and the Al2O3 contributes to the decrease it, effect that is manifested in the Sn-Co-Nb varistor systems. Breakdown field increase up to 6300V/cm with increasing Al2O3 content and non-linear coefficients with alpha=22 were obtained.
Resumo:
Barium titanate is used extensively as a dielectric in ceramic capacitors, particularly due to its high dielectric constant and low dielectric loss characteristics. It can be made semiconducting by addition of certain dopants and by proper modification of grains and grain boundary properties obtaining very interesting characteristics for various applications. The synthesis method and sintering regime have a strong influence on properties of obtained barium titanate ceramics. Doped barium titanate was prepared with Nb+5 and Y+3 ions as donor dopants, and with Mn+2 ions as acceptor dopant by polymeric precursors method. By this procedure nanosized powders were obtained after calcination. Sintering was performed in the temperature range of 1290°C to 1380°C The microstructure of doped BaTiO3 was performed using scanning electron microscopy. The influence of dopants and sintering temperature on grain size was analysed.
Resumo:
Barium titanates doped with Nb5+, and Y3+, were prepared. The starting powders were synthesized from citrate solutions by the Pechini process and partial Pechini process in two steps. Sintering was performed in the range from 1310° up to 1380°C for 2 hours in air atmosphere. The structural study concerning the incorporation of Nb and Y ions in the barium titanate crystal lattice was performed by XRD, XANES and EXAFS techniques. The dielectric properties were analyzed and the relationship between properties and structure of doped barium titanate was established.
Resumo:
The microstructure and dielectric properties of Nb-Mn or Sb-Mn codoped BaTiO3 compositions were investigated. Starting ceramics powders were prepared by Pechini method. The composites were sintered at 1310°C and 1330°C in an air atmosphere for two hours. The microstructure and compositional investigations were done with SEM equipped with EDS. Two distinguish microstructure regions are observed in Nb/0.05Mn doped BaTiO 3 ceramics sintered at low temperature. The first, large one, with grain sizes from 5-40 μm and the second region with small grain sizes from 1 to 5 μm. Sintering at higher temperature, independent of Mn content, enables to achieve a uniform microstructure with grains less than 6 μm. In Sb/Mn doped ceramics, for both sintering temperatures, bimodal microstructures with fine grained matrix and grains up to 10 μm is formed. The highest value of permittivity at room temperature and the greatest change of permittivity in function of temperature are observed in Nb/0.01Mn doped ceramics compared to the same ones in Sb/Mn doped ceramics. The greatest shift of Curie temperature towards lower temperature has been noticed in Sb/Mn BaTiO3 ceramics compared to others samples. In all investigated samples the dielectric loss after initially large values at low frequency maintains a constant value for f>3 kHz.
Resumo:
Tin oxide has wakened up great scientific and technological interest for its potential use in varistors production and as gas sensor. In order to improve the microstructural and electrical properties in SnO varistor ceramics, the influence of differents dopants used, like TiO2 and Al2O3, is under research. The effect of TiO2 and Al2O3 on the properties of Sn-Co-Nb varistor Systems obtained by the Pechini method has been investigated in this work. Characterization of synthesized raw material was performed by X-Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM). The microstructural and electrical characterization of sintered samples show that the TiO2 favors the grain growth and the Al2O3, contributes to the decrease it, effect that is manifested in the Sn-Co-Nb varistor systems. Breakdown field increase up to 6300V/cm with increasing Al2O3 content and non-linear coefficients with α=22 were obtained.
Resumo:
Bi 4Ti 3- xNbxO 12 (BITNb) samples, with × ranging from 0 to 0.40 were obtained using a polymeric precursor solution. Rietveld analyses confirmed that the powders crystallize in an orthorhombic structure free of secondary phases with space group Fmmm. Raman analysis evidenced a sharp increase in the bands intensity located at 129 cm -1 and 190 cm -1 due the lattice distortion in BIT02Nb and BIT04Nb compositions. UV-vis spectra indicated that addition of niobium causes a reduction of defects in the BIT lattice due the suppression of oxygen vacancies located at BO-6 octahedral. Size and morphology of particles as well as electrical behavior of BIT ceramics were affected by addition of donor dopant. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning and was investigated by piezoresponse force microscopy (PFM). PFM measurements revealed a decrease in piezoelectric response with increasing Nb concentration originating from a reduced polarizability along the a-axis. High spontaneous polarization is noted for the less doped sample due the reduction of strain energy and pin charged defects after niobium addition. Copyright © 2010 American Scientific Publishers.
Resumo:
This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.