916 resultados para Multivariate volatility models
Resumo:
En este estudio se realizó un análisis predictivo de la aparición de eventos adversos de los pacientes de una IPS de Bogotá, Mederi Hospital Universitario de Barrios Unidos (HUBU) durante el año 2013; relacionados con los indicadores de eficiencia hospitalaria (Porcentaje de ocupación hospitalaria, número de egresos hospitalarios, promedio de estancia hospitalaria, número de egresos de urgencias, promedio de estancia en urgencias). Los datos fueron exportados a una matriz de análisis de las variables cualitativas; fueron presentadas con frecuencias absolutas y relativas, las variables cuantitativas (edad, tiempos de estancia) fueron presentadas con media, desviaciones estándar. Se agruparon los datos de eventos adversos y de eficiencia hospitalaria en una nueva matriz que permitiera el análisis predictivo la nueva matriz fue exportada al software de modelación estadístico Eviews 6.5; se especificaron modelos predictivos multivariados para la variable número de eventos adversos, respecto de los indicadores de eficiencia hospitalaria y se estimaron las probabilidades de ocurrencia, análisis de correlación y multicolinealidad; los resultados se presentaron en tablas de estimación para cada modelo, se restringieron los eventos adversos prevenibles y no prevenibles información obtenida a través de un sistema de información que registra los factores relacionados con la ocurrencia de eventos adversos en salud, a través del sistema de reporte de eventos en salud, reporte en las historias clínicas, reporte individual, reporte por servicio, análisis de datos y estudios de caso, de la misma forma fueron extraídos los datos de eficiencia hospitalaria para el mismo periodo. El análisis y gestión de eventos adversos pretende establecer estrategias de mejoramiento continuo y análisis de resultados frente a los indicadores de eficiencia que permitan intervención de los factores de riesgo operativo de los servicios del Hospital Universitario de Barrios Unidos (HUBU), relacionados con eventos adversos en la atención de los pacientes en especial se debe enfocar en la gestión de los egresos de pacientes de acuerdo a los resultados obtenidos con el fin de alinearse y fortalecer las políticas de seguridad del paciente para brindar una atención integral con calidad y eficiencia, disminuyendo las quejas en la atención, las glosas, los riesgos jurídicos, de acuerdo al modelo predictivo estudiado.
Resumo:
Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.
Resumo:
This study examines the long-run performance of initial public offerings on the Stock Exchange of Mauritius (SEM). The results show that the 3-year equally weighted cumulative adjusted returns average −16.5%. The magnitude of this underperformance is consistent with most reported studies in different developed and emerging markets. Based on multivariate regression models, firms with small issues and higher ex ante financial strength seem on average to experience greater long-run underperformance, supporting the divergence of opinion and overreaction hypotheses. On the other hand, Mauritian firms do not on average time their offerings to lower cost of capital and as such, there seems to be limited support for the windows of opportunity hypothesis.
Resumo:
We show how multivariate GARCH models can be used to generate a time-varying “information share” (Hasbrouck, 1995) to represent the changing patterns of price discovery in closely related securities. We find that time-varying information shares can improve credit spread predictions.
Resumo:
The aim of this study was to evaluate working conditions in the textile industry for different stages of Corporate Social Responsibility (CSR) development, and workers` perception of fatigue and workability. A cross-sectional study was undertaken with 126 workers in the production areas of five Brazilian textile plants. The corporate executive officers and managers of each company provided their personal evaluations of CSR. Companies were divided into 2 groups (higher and lower) of CSR scores. Workers completed questionnaires on fatigue, workability and working conditions. Ergonomic job analysis showed similar results for working conditions, independent of their CSR score. Multivariate analysis models were developed for fatigue and workability, indicating that they are both associated to factors related to working conditions and individual workers` characteristics and life styles. Work organization, (what, how, when, where and for how long the work is done), is also an associated factor for fatigue. This study suggests that workers` opinions should be taken into greater consideration when companies develop their CSR programs, in particular for those relating to working conditions. Relevance to industry: This paper underlines the importance of considering working conditions and workers` opinions of them, work organization and individual workers` characteristics and life styles in order to restore or to maintain workability and to reduce fatigue, independently of how developed a company may be in the field of Corporate Social Responsibility. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
O objetivo do presente trabalho é analisar as características empíricas de uma série de retornos de dados em alta freqüência para um dos ativos mais negociados na Bolsa de Valores de São Paulo. Estamos interessados em modelar a volatilidade condicional destes retornos, testando em particular a presença de memória longa, entre outros fenômenos que caracterizam este tipo de dados. Nossa investigação revela que além da memória longa, existe forte sazonalidade intradiária, mas não encontramos evidências de um fato estilizado de retornos de ações, o efeito alavancagem. Utilizamos modelos capazes de captar a memória longa na variância condicional dos retornos dessazonalizados, com resultados superiores a modelos tradicionais de memória curta, com implicações importantes para precificação de opções e de risco de mercado
Resumo:
Mensalmente são publicados relatórios pelo Departamento de Agricultura dos Estados Unidos (USDA) onde são divulgados dados de condições das safras, oferta e demanda globais, nível dos estoques, que servem como referência para todos os participantes do mercado de commodities agrícolas. Esse mercado apresenta uma volatilidade acentuada no período de divulgação dos relatórios. Um modelo de volatilidade estocástica com saltos é utilizado para a dinâmica de preços de milho e de soja. Não existe um modelo ‘ideal’ para tal fim, cada um dos existentes têm suas vantagens e desvantagens. O modelo escolhido foi o de Oztukel e Wilmott (1998), que é um modelo de volatilidade estocástica empírica, incrementado com saltos determinísticos. Empiricamente foi demonstrado que um modelo de volatilidade estocástica pode ser bem ajustado ao mercado de commodities, e o processo de jump-diffusion pode representar bem os saltos que o mercado apresenta durante a divulgação dos relatórios. As opções de commodities agrícolas que são negociadas em bolsa são do tipo americanas, então alguns métodos disponíveis poderiam ser utilizados para precificar opções seguindo a dinâmica do modelo proposto. Dado que o modelo escolhido é um modelo multi-fatores, então o método apropriado para a precificação é o proposto por Longstaff e Schwartz (2001) chamado de Monte Carlo por mínimos quadrados (LSM). As opções precificadas pelo modelo são utilizadas em uma estratégia de hedge de uma posição física de milho e de soja, e a eficiência dessa estratégia é comparada com estratégias utilizando-se instrumentos disponíveis no mercado.
Resumo:
This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dados de 14.918 animais da raça Nelore nascidos entre 1991 e 2000, provenientes de rebanhos localizados nas regiões Sul e Sudeste do País, foram utilizados para estimar componentes de co-variância, herdabilidade e correlações genéticas de peso ao desmame (PD), peso a 1 ano de idade (PA), peso ao sobreano (PS), peso ao primeiro parto (PPP), idade ao primeiro parto (IPP) e dias para o primeiro parto (DP). As estimativas dos componentes de co-variância e dos parâmetros genéticos foram obtidas pelo método de máxima verossimilhança restrita, em análises multivariadas. As herdabilidades estimadas para PD, PA, PS, PPP, IPP e DP foram de 0,26; 0,30; 0,34; 0,35; 0,14 e 0,07, respectivamente. Correlações genéticas negativas foram estimadas entre pesos medidos em diferentes idades e IPP, as quais variaram de -0,31 a -0,16. do mesmo modo, as estimativas de correlação genética entre PD × DP (-0,09); PA × DP (-0,13); PS × DP (-0,17) e PPP × DP (-0,16) foram negativas, embora de menor magnitude. As correlações genéticas estimadas entre as características de crescimento e a IPP foram favoráveis. Assim, a seleção para aumento de peso deve promover redução da IPP. A alta correlação genética estimada entre IPP e DP (0,73) indica que o uso de DP na seleção de bovinos de corte pode promover resposta correlacionada favorável na idade ao primeiro parto.
Resumo:
This work is combined with the potential of the technique of near infrared spectroscopy - NIR and chemometrics order to determine the content of diclofenac tablets, without destruction of the sample, to which was used as the reference method, ultraviolet spectroscopy, which is one of the official methods. In the construction of multivariate calibration models has been studied several types of pre-processing of NIR spectral data, such as scatter correction, first derivative. The regression method used in the construction of calibration models is the PLS (partial least squares) using NIR spectroscopic data of a set of 90 tablets were divided into two sets (calibration and prediction). 54 were used in the calibration samples and the prediction was used 36, since the calibration method used was crossvalidation method (full cross-validation) that eliminates the need for a validation set. The evaluation of the models was done by observing the values of correlation coefficient R 2 and RMSEC mean square error (calibration error) and RMSEP (forecast error). As the forecast values estimated for the remaining 36 samples, which the results were consistent with the values obtained by UV spectroscopy
Resumo:
In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma
Resumo:
The density, heat capacity and thermal conductivity of mango pulp (Mangifera indica L. cv. Tommy Atkins) were determined at moisture contents of between 0.9 and 0.52 kg kg(-1) (w.b.) and temperatures of between 20 and 80 degrees C. The experimental data were satisfactorily fitted (explained variation values >99.1%) as functions of the moisture content and temperature by using multivariate linear models. In the range of conditions considered, the moisture content exhibits a greater influence on the studied properties than temperature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)