957 resultados para Multivariate volatility models
Resumo:
Background: In most of the emergency departments (ED) in developed countries, a subset of patients visits the ED frequently. Despite their small numbers, these patients are the source of a disproportionally high number of all ED visits, and use a significant proportion of healthcare resources. They place a heavy economic burden on hospital and healthcare system budgets overall. In order to improve the management of these patients, the University hospital of Lausanne, Switzerland implemented a case management intervention (CM) between May 2012 and July 2013. In this randomized controlled trial, 250 frequent ED users (visits>5 during previous 12 months) were allocated to either the CM group or the standard ED care (SC) group and followed up for 12 months. The first result of the CM was to reduce significantly the ED visits. The present study examined whether the CM intervention also reduced the costs generated by the ED frequent users not only from the hospital perspective, but also from the healthcare system perspective. Methods: Cost data were obtained from the hospital's analytical accounting system and from health insurances. Multivariate linear models including a fixed effect "group" and socio-demographic characteristics and health-related variables were run.
Resumo:
OBJECTIVE: We evaluated whether regional differences in physical activity (PA) and sedentary behaviour (SB) existed along language boundaries within Switzerland and whether potential differences would be explained by socio-demographics or environmental characteristics. METHODS: We combined data of 611 children aged 4 to 7 years from four regional studies. PA and SB were assessed by accelerometers. Information about the socio-demographic background was obtained by questionnaires. Objective neighbourhood attributes could be linked to home addresses. Multivariate regression models were used to test associations between PA and SB and socio-demographic characteristics and neighbourhood attributes. RESULTS: Children from the German compared to the French-speaking region were more physically active and less sedentary (by 10-15 %, p < 0.01). Although German-speaking children lived in a more favourable environment and a higher socioeconomic neighbourhood (differences p < 0.001), these characteristics did not explain the differences in PA behaviour between French and German speaking. CONCLUSIONS: Factors related to the language region, which might be culturally rooted were among the strongest correlates of PA and SB among Swiss children, independent of individual, social and environmental factors.
Resumo:
The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.
Resumo:
The application of analytical procedures based on multivariate calibration models has been limited in several areas due to requirements of validation and certification of the model. Procedures for validation are presented based on the determination of figures of merit, such as precision (mean, repeatability, intermediate), accuracy, sensitivity, analytical sensitivity, selectivity, signal-to-noise ratio and confidence intervals for PLS models. An example is discussed of a model for polymorphic purity control of carbamazepine by NIR diffuse reflectance spectroscopy. The results show that multivariate calibration models can be validated to fulfill the requirements imposed by industry and standardization agencies.
Resumo:
In this work the antioxidant capacity of red wine samples was characterized by conventional spectroscopic and chromatographic methodologies, regarding chemical parameters like color, total polyphenolic and resveratrol content, and antioxidant activity. Additionally, multivariate calibration models were developed to predict the antioxidant activity, using partial least square regression and the spectral data registered between 400 and 800 nm. Even when a close correlation between the evaluated parameters has been expected many inconsistencies were observed, probably on account of the low selectivity of the conventional methodologies. Models developed from mean-centered spectra and using 4 latent variables allowed high prevision capacity of the antioxidant activity, permitting relative errors lower than 3%.
Resumo:
This thesis investigates the effectiveness of time-varying hedging during the financial crisis of 2007 and the European Debt Crisis of 2010. In addition, the seven test economies are part of the European Monetary Union and these countries are in different economical states. Time-varying hedge ratio was constructed using conditional variances and correlations, which were created by using multivariate GARCH models. Here we have used three different underlying portfolios: national equity markets, government bond markets and the combination of these two. These underlying portfolios were hedged by using credit default swaps. Empirical part includes the in-sample and out-of-sample analysis, which are constructed by using constant and dynamic models. Moreover, almost in every case dynamic models outperform the constant ones in the determination of the hedge ratio. We could not find any statistically significant evidence to support the use of asymmetric dynamic conditional correlation model. In addition, our findings are in line with prior literature and support the use of time-varying hedge ratio. Finally, we found that in some cases credit default swaps are not suitable instruments for hedging and they act more as a speculative instrument.
Resumo:
Introduction: Experimental studies have suggested that indoxyl sulfate (IS), a protein-bound uremic toxin, may be involved in the development of renal osteodystrophy. Objective: evaluate the association between IS levels and biochemical parameters related to mineral metabolism and bone histomorphometry in a cohort of pre-dialysis chronic kidney disease (CKD) patients. Methods: This is a post-hoc analysis of an observational study evaluating the association between coronary calcification and bone biopsy findings in 49 patients (age: 52 ± 10 years; 67% male; estimated glomerular filtration rate: 36 ± 17 ml/min). Serum levels of IS were measured. Results: Patients at CKD stages 2 and 3 presented remarkably low bone formation rate. Patients at CKD stages 4 and 5 presented significantly higher osteoid volume, osteoblast and osteoclast surface, bone fibrosis volume and bone formation rate and a lower mineralization lag time than CKD stage 2 and 3 patients. We observed a positive association between IS levels on one hand and the bone formation rate, osteoid volume, osteoblast surface and bone fibrosis volume on the other. Multivariate regression models confirmed that the associations between IS levels and osteoblast surface and bone fibrosis volume were both independent of demographic and biochemical characteristics of the study population. A similar trend was observed for the bone formation rate. Conclusion: Our findings demonstrated that IS is positively associated with bone formation rate in pre-dialysis CKD patients.
Resumo:
In this paper, we provide both qualitative and quantitative measures of the cost of measuring the integrated volatility by the realized volatility when the frequency of observation is fixed. We start by characterizing for a general diffusion the difference between the realized and the integrated volatilities for a given frequency of observations. Then, we compute the mean and variance of this noise and the correlation between the noise and the integrated volatility in the Eigenfunction Stochastic Volatility model of Meddahi (2001a). This model has, as special examples, log-normal, affine, and GARCH diffusion models. Using some previous empirical works, we show that the standard deviation of the noise is not negligible with respect to the mean and the standard deviation of the integrated volatility, even if one considers returns at five minutes. We also propose a simple approach to capture the information about the integrated volatility contained in the returns through the leverage effect.
Resumo:
In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopted is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, three applications to GARCH and realized volatility models are presented.
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
En este estudio se realizó un análisis predictivo de la aparición de eventos adversos de los pacientes de una IPS de Bogotá, Mederi Hospital Universitario de Barrios Unidos (HUBU) durante el año 2013; relacionados con los indicadores de eficiencia hospitalaria (Porcentaje de ocupación hospitalaria, número de egresos hospitalarios, promedio de estancia hospitalaria, número de egresos de urgencias, promedio de estancia en urgencias). Los datos fueron exportados a una matriz de análisis de las variables cualitativas; fueron presentadas con frecuencias absolutas y relativas, las variables cuantitativas (edad, tiempos de estancia) fueron presentadas con media, desviaciones estándar. Se agruparon los datos de eventos adversos y de eficiencia hospitalaria en una nueva matriz que permitiera el análisis predictivo la nueva matriz fue exportada al software de modelación estadístico Eviews 6.5; se especificaron modelos predictivos multivariados para la variable número de eventos adversos, respecto de los indicadores de eficiencia hospitalaria y se estimaron las probabilidades de ocurrencia, análisis de correlación y multicolinealidad; los resultados se presentaron en tablas de estimación para cada modelo, se restringieron los eventos adversos prevenibles y no prevenibles información obtenida a través de un sistema de información que registra los factores relacionados con la ocurrencia de eventos adversos en salud, a través del sistema de reporte de eventos en salud, reporte en las historias clínicas, reporte individual, reporte por servicio, análisis de datos y estudios de caso, de la misma forma fueron extraídos los datos de eficiencia hospitalaria para el mismo periodo. El análisis y gestión de eventos adversos pretende establecer estrategias de mejoramiento continuo y análisis de resultados frente a los indicadores de eficiencia que permitan intervención de los factores de riesgo operativo de los servicios del Hospital Universitario de Barrios Unidos (HUBU), relacionados con eventos adversos en la atención de los pacientes en especial se debe enfocar en la gestión de los egresos de pacientes de acuerdo a los resultados obtenidos con el fin de alinearse y fortalecer las políticas de seguridad del paciente para brindar una atención integral con calidad y eficiencia, disminuyendo las quejas en la atención, las glosas, los riesgos jurídicos, de acuerdo al modelo predictivo estudiado.
Resumo:
Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.
Resumo:
This study examines the long-run performance of initial public offerings on the Stock Exchange of Mauritius (SEM). The results show that the 3-year equally weighted cumulative adjusted returns average −16.5%. The magnitude of this underperformance is consistent with most reported studies in different developed and emerging markets. Based on multivariate regression models, firms with small issues and higher ex ante financial strength seem on average to experience greater long-run underperformance, supporting the divergence of opinion and overreaction hypotheses. On the other hand, Mauritian firms do not on average time their offerings to lower cost of capital and as such, there seems to be limited support for the windows of opportunity hypothesis.
Resumo:
We show how multivariate GARCH models can be used to generate a time-varying “information share” (Hasbrouck, 1995) to represent the changing patterns of price discovery in closely related securities. We find that time-varying information shares can improve credit spread predictions.
Resumo:
The aim of this study was to evaluate working conditions in the textile industry for different stages of Corporate Social Responsibility (CSR) development, and workers` perception of fatigue and workability. A cross-sectional study was undertaken with 126 workers in the production areas of five Brazilian textile plants. The corporate executive officers and managers of each company provided their personal evaluations of CSR. Companies were divided into 2 groups (higher and lower) of CSR scores. Workers completed questionnaires on fatigue, workability and working conditions. Ergonomic job analysis showed similar results for working conditions, independent of their CSR score. Multivariate analysis models were developed for fatigue and workability, indicating that they are both associated to factors related to working conditions and individual workers` characteristics and life styles. Work organization, (what, how, when, where and for how long the work is done), is also an associated factor for fatigue. This study suggests that workers` opinions should be taken into greater consideration when companies develop their CSR programs, in particular for those relating to working conditions. Relevance to industry: This paper underlines the importance of considering working conditions and workers` opinions of them, work organization and individual workers` characteristics and life styles in order to restore or to maintain workability and to reduce fatigue, independently of how developed a company may be in the field of Corporate Social Responsibility. (C) 2010 Elsevier B.V. All rights reserved.