868 resultados para Multi-scale place recognition
Resumo:
Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.
Resumo:
The 2015 FRVT gender classification (GC) report evidences the problems that current approaches tackle in situations with large variations in pose, illumination, background and facial expression. The report suggests that both commercial and research solutions are hardly able to reach an accuracy over 90% for The Images of Groups dataset, a proven scenario exhibiting unrestricted or in the wild conditions. In this paper, we focus on this challenging dataset, stepping forward in GC performance by observing: 1) recent literature results combining multiple local descriptors, and 2) the psychophysics evidences of the greater importance of the ocular and mouth areas to solve this task...
Resumo:
This dissertation focuses on design challenges caused by secondary impacts to printed wiring assemblies (PWAs) within hand-held electronics due to accidental drop or impact loading. The continuing increase of functionality, miniaturization and affordability has resulted in a decrease in the size and weight of handheld electronic products. As a result, PWAs have become thinner and the clearances between surrounding structures have decreased. The resulting increase in flexibility of the PWAs in combination with the reduced clearances requires new design rules to minimize and survive possible internal collisions impacts between PWAs and surrounding structures. Such collisions are being termed ‘secondary impact’ in this study. The effect of secondary impact on board-level drop reliability of printed wiring boards (PWBs) assembled with MEMS microphone components, is investigated using a combination of testing, response and stress analysis, and damage modeling. The response analysis is conducted using a combination of numerical finite element modeling and simplified analytic models for additional parametric sensitivity studies.
Resumo:
Understanding and predicting patterns of distribution and abundance of marine resources is important for con- servation and management purposes in small-scale artisanal fisheries and industrial fisheries worldwide. The goose barnacle (Pollicipes pollicipes) is an important shellfish resource and its distribution is closely related to wave exposure at different spatial scales. We modelled the abundance (percent coverage) of P. pollicipes as a function of a simple wave exposure index based on fetch estimates from digitized coastlines at different spatial scales. The model accounted for 47.5% of the explained deviance and indicated that barnacle abundance increases non-linearly with wave exposure at both the smallest (metres) and largest (kilometres) spatial scales considered in this study. Distribution maps were predicted for the study region in SW Portugal. Our study suggests that the relationship between fetch-based exposure indices and P. pollicipes percent cover may be used as a simple tool for providing stakeholders with information on barnacle distribution patterns. This information may improve assessment of harvesting grounds and the dimension of exploitable areas, aiding management plans and support- ing decision making on conservation, harvesting pressure and surveillance strategies for this highly appreciated and socio- economically important marine resource.
Resumo:
In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.
Resumo:
Many studies suggest that migratory birds are expected to travel more quickly during spring, when they are en route to the breeding grounds, in order to ensure a high-quality territory. Using data recorded by means of Global Positioning System satellite tags, we analysed at three temporal scales (hourly, daily and overall journey) seasonal differences in migratory performance of the booted eagle (Aquila pennata), a soaring raptor migrating between Europe and tropical Africa, taking into account environmental conditions such as wind, thermal uplift and day length. Unexpectedly, booted eagles showed higher travel rates (hourly speed, daily distance, overall migration speed and overall straightness) during autumn, even controlling for abiotic factors, probably thanks to higher hourly speeds, more straight routes and less non-travelling days during autumn. Tailwinds were the main environmental factor affecting daily distance. During spring, booted eagles migrated more quickly when flying over the Sahara desert. Our results raise new questions about which ecological and behavioural reasons promote such unexpected faster speeds in autumn and not during spring and how events occurring in very different regions can affect migratory performance, interacting with landscape characteristics, weather conditions and flight behaviour.
Resumo:
In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.
Resumo:
Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a transdisciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analyzing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward toward the inclusion of the cultural dimension in European wide assessments can be made
Resumo:
Brazil's Low Carbon Agriculture is one the initiatives that puts the climate in the agricultural agenda towards a more sustainable and adapted agriculture under global changes. Among the several practices listed and supported by the ABC Plan, zero tillage and integrated crop-livestock-forestry systems including the recovery of degraded pasture are the most relevant ones. The objective of this paper is to present the Geo-ABC Project, a procedure to monitor the implementation of the Brazil?s Low Carbon Agriculture (ABC Plan) and aiming at the development of remote sensing methods to monitor agricultural systems listed in the ABC Plan and adopted at local scale.
Resumo:
La planification intégrée du développement urbain et des transports durables est aujourd’hui cruciale au double impératif d’une plus grande maîtrise des déplacements automobiles et d’une diminution de la « dépendance automobile », éléments essentiels au développement durable des grandes métropoles. La présente recherche visait l‘approfondissement des connaissances sur l‘évolution récente de la forme urbaine dans les trois régions métropolitaines canadiennes de Toronto, Montréal et Vancouver, sous l’angle particulier de l’intégration « forme urbaine – transports durables ». Notre stratégie de recherche a consisté en l’élaboration d’un cadre d‘analyse qui devait permettre une opérationnalisation complète du paradigme d‘aménagement à l‘étude ainsi qu’une évaluation de sa mise en œuvre. Ce cadre tire parti des opportunités analytiques qu‘offrent les systèmes d‘information géographique (SIG) ainsi que certains outils Internet courants de « visite virtuelle des lieux » tel que Google Earth. Il en est résulté une approche méthodologique originale, multidimensionnelle et multi-échelle. Son application a permis des analyses particulières de la forme urbaine pour chacune des trois régions cibles, structurées selon trois axes principaux : leur performance globale (autour de 2006), leur performance en périphérie métropolitaine ainsi que l’évolution de leur performance entre 2001 et 2006. De nos analyses comparatives, Vancouver se démarque avec des performances supérieures pour les trois axes, tout particulièrement pour l‘évolution de ses performances. Montréal arrive quant à elle troisième, en raison notamment de sa faible performance en périphérie. Globalement, les trois régions métropolitaines affichent de faibles niveaux d’intégration entre la forme urbaine et les réseaux de transport durable et souffrent d’une grande dépendance automobile structurelle, particulièrement en leur périphérie. Par ailleurs, en dépit d’objectifs de planification adéquats, les déficiences de leur forme urbaine et leurs progrès relativement modestes laissent présager une prédominance de la dépendance automobile qui perdurera au cours des prochaines années. Il nous apparaît primordial que tous les acteurs du domaine public fassent preuve d‘une plus grande « lucidité », voire maturité, face aux lourds constats exposant la difficile mise en œuvre de leurs objectifs ainsi que la dichotomie entre ce qui « se passe sur le terrain » et le contenu de leurs politiques. Une première étape obligée vers un raffinement des politiques et, peut-être, vers leur plus grande efficacité passe sans doute par la pleine reconnaissance des limites du paradigme d’aménagement actuel et de l‘immense défi que représente un inversement des tendances. Cela implique notamment une plus grande transparence en matière d‘évaluation des politiques ainsi que des efforts communs pour le développement et la diffusion de données de qualité dans les domaines connexes de la forme urbaine et des transports urbains, de meilleurs outils de monitoring, etc., qui pourraient aider à instituer une nouvelle synergie entre tous les acteurs impliqués tant dans la recherche urbaine, le développement urbain que les politiques d’aménagement et de transport. Le raffinement de notre propre approche méthodologique pourrait aussi bénéficier de telles avancées, approche qui constitue une des avenues possibles pour la poursuite de l‘exploration de l‘enjeu de l‘intégration « forme urbaine – transports durables » dans les régions métropolitaines canadiennes.
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
We consider brightness/contrast-invariant and rotation-discriminating template matching that searches an image to analyze A for a query image Q We propose to use the complex coefficients of the discrete Fourier transform of the radial projections to compute new rotation-invariant local features. These coefficients can be efficiently obtained via FFT. We classify templates in ""stable"" and ""unstable"" ones and argue that any local feature-based template matching may fail to find unstable templates. We extract several stable sub-templates of Q and find them in A by comparing the features. The matchings of the sub-templates are combined using the Hough transform. As the features of A are computed only once, the algorithm can find quickly many different sub-templates in A, and it is Suitable for finding many query images in A, multi-scale searching and partial occlusion-robust template matching. (C) 2009 Elsevier Ltd. All rights reserved.