904 resultados para Motor control


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to quickly detect and respond to visual stimuli in the environment is critical to many human activities. While such perceptual and visual-motor skills are important in a myriad of contexts, considerable variability exists between individuals in these abilities. To better understand the sources of this variability, we assessed perceptual and visual-motor skills in a large sample of 230 healthy individuals via the Nike SPARQ Sensory Station, and compared variability in their behavioral performance to demographic, state, sleep and consumption characteristics. Dimension reduction and regression analyses indicated three underlying factors: Visual-Motor Control, Visual Sensitivity, and Eye Quickness, which accounted for roughly half of the overall population variance in performance on this battery. Inter-individual variability in Visual-Motor Control was correlated with gender and circadian patters such that performance on this factor was better for males and for those who had been awake for a longer period of time before assessment. The current findings indicate that abilities involving coordinated hand movements in response to stimuli are subject to greater individual variability, while visual sensitivity and occulomotor control are largely stable across individuals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorised robot arm to manipulate the dynamics of rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorised robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force-velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a consequence of the fragility of various neural structures, preterm infants born at a low gestation and/or birthweight are at an increased risk of developing motor abnormalities. The lack of a reliable means of assessing motor integrity prevents early therapeutic intervention. In this paper, we propose a new method of assessing neonatal motor performance, namely the recording and subsequent analysis of intraoral sucking pressures generated when feeding nutritively. By measuring the infant's control of sucking in terms of a new development of tau theory, normal patterns of intraoral motor control were established for term infants. Using this same measure, the present study revealed irregularities in sucking control of preterm infants. When these findings were compared to a physiotherapist's assessment six months later, the preterm infants who sucked irregularly were found to be delayed in their motor development. Perhaps a goal-directed behaviour such as sucking control that can be measured objectively at a very young age, could be included as part of the neurological assessment of the preterm infant. More accurate classification of a preterm infant's movement abnormalities would allow for early therapeutic interventions to be realised when the infant is still acquiring the most basic of motor functions. (C) Springer-Verlag 2000.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A CIF é um sistema de classificação adotado pela OMS, que serve de referência universal para descrever, avaliar e medir saúde e incapacidade, a nível individual e ao nível da população. Contudo, apesar do interesse internacional gerado em torno da CIF, esta é considerada uma classificação complexa e extensa, fato que despoletou a criação de core sets – listas de itens da CIF especificamente selecionados pela sua relevância na descrição e qualificação de uma determinada condição de saúde – como resposta a esta problemática. Até à data, foram desenvolvidos core sets para várias patologias comuns. Contudo, apesar do controlo motor ser uma área de investigação muito reconhecida nos últimos 20 anos, ainda não possui um core set próprio. Assim, o objetivo deste estudo é contribuir para o desenvolvimento de um core set, com base na CIF-CJ, dirigido para uma descrição abrangente das competências inerentes a crianças, dos 6 aos 18 anos de idade, com défices no controlo motor. Deste modo, recorreu-se a uma revisão da literatura sobre a temática em estudo, de modo a reunir informação para a construção de uma proposta a core set, posteriormente sujeita ao escrutínio de peritos, através do recurso ao método de Delphi. Após várias rondas, foi alcançado um consenso acerca da lista final de códigos CIF que constituem o core set final.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introdução: O Active Straight Leg Raise (ASLR) tem sido sugerido como um indicador clínico da estabilidade lombopélvica. Estratégias passivas e ativas podem contribuir para aumentar esta estabilidade, assim como programas de exercício baseados nas mesmas estratégias ativas. Objetivos: Comparar os efeitos imediatos da compressão pélvica manual (CP), do drawing-in (DI) e do bracing abdominal (BA) durante o ASLR em indivíduos com e sem dor lombopélvica crónica e inespecífica, e avaliar o efeito prolongado das manobras de estabilização ativas através dos programas de exercícios de controlo motor, Pilates e McGill. Métodos: Estudo transversal, com uma amostra de 111 voluntários, 52 sem dor lombopélvica (NLPPG) e 59 com dor lombopélvica (LPPG), e estudo experimental, formado pelo LPPG dividido em 19 no grupo controlo (GC), 20 no grupo pilates (GP) e 20 no grupo mcgill (GMg). Foi avaliado o ASLR padrão, o ASLR com CP, o ASLR com DI e ASLR com BA. Os participantes foram avaliados antes e após as 8 semanas de implementação dos programas exercícios de McGill e Richardson, apenas aos respetivos grupos. Resultados: O LPPG apresentou significativamente maior score no ASLR comparativamente ao NLPPG (z=-9,361; p<0,001). Apesar do BA ter apresentado scores inferiores às restantes estratégias (p<0,001), todas elas foram capazes de diminuir o score do ASLR (p<0,001). Após a aplicação dos programas de exercícios, verificou-se que o GP (p<0,001) e o GMg (p<0,001) apresentaram scores significativamente menores no ASLR, relativamente ao GC. No GP e no GMg verificou-se uma diminuição do score do ASLR (Z=-4,028; p<0,001; Z=-4,179; p<0,001, respetivamente). Além disso, GMg apresentou uma tendência para apresentar menores scores do ASLR comparativamente ao GP. Conclusão: Qualquer uma destas manobras de estabilização quando adicionada ao ASLR pode aumentar a estabilidade lombopélvica, especialmente o BA. Os exercícios de Pilates e de McGill permitiram melhorar os scores do ASLR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introdução: em indivíduos com dor lombo-pélvica (LPP), parece existir uma alteração de controlo motor e diminuição da endurance dos músculos do tronco. A realização de exercícios de controlo motor pode melhorar a endurance dessa musculatura e consequentemente o controlo motor. Objetivos: detetar diferenças nos tempos e rácios de endurance dos músculos do tronco em indivíduos com e sem dor lombo-pélvica e avaliar o efeito de dois programas de exercícios de controlo motor (segundo Richardson e segundo McGill) nos mesmos outcomes em indivíduos com LPP. Métodos: estudo transversal com uma amostra de 111 indivíduos, 52 para o grupo sem dor (NLPP) e 59 para o com LPP e estudo experimental, constituído pelos indivíduos LPP (59), alocados nos grupos de Pilates (20), McGill (20) ou no grupo controlo (19). Avaliaramse os tempos obtidos nos testes de endurance para os músculos extensores, flexores, flexores laterais direitos e esquerdos do tronco e respetivos rácios, tendo em conta o modelo de McGill. As avaliações dos grupos do estudo experimental realizaram-se antes e após as 8 semanas de exercício. Resultados: os indivíduos com LPP apresentaram tempos e rácios de endurance significativamente inferiores aos indivíduos NLPP (p<0.001). Após as 8 semanas de exercício, registaram-se diferenças estatisticamente significativas entre os grupos em todos os testes de endurance, sendo que o grupo de McGill apresentou tempos significativamente superiores aos do grupo de Pilates para os músculos flexores (p=0.001), flexores laterais direitos (p=0.002) e esquerdos (p=0.009). Quanto aos rácios de endurance, não se detetaram apenas diferenças estatisticamente significativas no rácio flexão lateral esquerda/extensão. Conclusão: os indivíduos com LPP apresentaram tempos e rácios de endurance do tronco inferiores aos dos indivíduos sem dor. Ambos os programas de exercícios melhoraram os tempos e os rácios de endurance, tendo existido uma tendência para melhores resultados na abordagem segundo McGill

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introducción: El uso de la estimulación cerebral no invasiva en procesos de rehabilitación es de gran interés, por cuanto con mediación tecnológica se generan nuevas posibilidades de recuperación motora, a partir de la activación de la corteza cerebral. El objetivo del estudio es establecer la evidencia del uso terapéutico de la EMT, relacionado con el desempeño motor de pacientes con enfermedades del sistema nervioso central. Metodología: Se realizó una revisión sistemática de la literatura. Se incluyeron 10 estudios en el análisis cualitativo que incluyó la evaluación de calidad con la escala de Jadad y del riesgo de sesgo con la herramienta Cochrane. Fueron excluidos 1613 estudios. Se aplicó el protocolo del estudio para la extracción, revisión y validez de los estudios incluidos. Resultados: La evidencia disponible muestra resultados positivos del uso terapéutico de la EMT en el desempeño motor en aspectos como la aceleración, la fuerza de pinza y de agarre, la estabilidad y la fuerza muscular, así como una mejor velocidad de la marcha y una disminución en la frecuencia y severidad de los espasmos. Discusión: La EMT puede constituir una estrategia terapéutica para mejorar el desempeño motor en pacientes con ECV, Lesión Medular y enfermedad de Parkinson, que requiere más investigación por la heterogeneidad de los diseños y medidas de descenlace utilizados, así como por la alta variabilidad interindividual que hace complejo estandarizar los protocolos de su uso terapéutico.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In terms of evolution, the strategy of catching prey would have been an important part of survival in a constantly changing environment. A prediction mechanism would have developed to compensate for any delay in the sensory-motor system. In a previous study, “proactive control” was found, in which the motion of the hands preceded the virtual moving target. These results implied that the positive phase shift of the hand motion represents the proactive nature of the visual-motor control system, which attempts to minimize the brief error in the hand motion when the target changes position unexpectedly. In our study, a visual target moves in circle (13 cm diameter) on a computer screen, and each subject is asked to keep track of the target’s motion by the motion of a cursor. As the frequency of the target increases, a rhythmic component was found in the velocity of the cursor in spite of the fact that the velocity of the target was constant. The generation of a rhythmic component cannot be explained simply as a feedback mechanism for the phase shifts of the target and cursor in a sensory-motor system. Therefore, it implies that the rhythmic component was generated to predict the velocity of the target, which is a feed-forward mechanism in the sensory-motor system. Here, we discuss the generation of the rhythmic component and its roll in the feed-forward mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

White matter tractsc onnecting areas involved in speech and motor control were examined using diffusion-tensor imagingingin a sample of peoplewhostutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend ourknowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotorcortex, cerebral peduncles and posteriorcorpus callosum in people who stutter, relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within theleft corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people whostutter in the three pairs ocerebellar peduncles thatcarry the afferent and efferent fibers of the cerebellum. Within thegroup of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the leftangular gyrus but the greater the white matter connectivity in theleft corticobulbartract. Also,in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cerebral palsy (CP) includes a broad range of disorders, which can result in impairment of posture and movement control. Brain-computer interfaces (BCIs) have been proposed as assistive devices for individuals with CP. Better understanding of the neural processing underlying motor control in affected individuals could lead to more targeted BCI rehabilitation and treatment options. We have explored well-known neural correlates of movement, including event-related desynchronization (ERD), phase synchrony, and a recently-introduced measure of phase dynamics, in participants with CP and healthy control participants. Although present, significantly less ERD and phase locking were found in the group with CP. Additionally, inter-group differences in phase dynamics were also significant. Taken together these findings suggest that users with CP exhibit lower levels of motor cortex activation during motor imagery, as reflected in lower levels of ongoing mu suppression and less functional connectivity. These differences indicate that development of BCIs for individuals with CP may pose additional challenges beyond those faced in providing BCIs to healthy individuals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure’ at the present time. Brain–computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals