958 resultados para Montmorillonite, Organoclay, Adsorption, Phenol, Infrared Spectroscopy, Near Infrared Spectroscopy
Resumo:
Vibrational overtone spectra of styrene (liquid) and polystyrene (solid), studied by the laser-induced thermal lens (for ΔV=6) and the conventional near infrared absorption (for ΔV=3–5) techniques, are reported. For polystyrene, the overtone energy-bond length correlation predicts that the aryl CH bonds are ∼0.0005 Å longer than that in benzene, while no such conclusions could be drawn on styrene. Thesp 3 CH overtones in polystyrene are observed on the low energy side of the aryl CH overtones.
Resumo:
Vibrational overtone spectroscopy of X-H (X=C,N,O) containing molecules is an area of recent interest. The spectroscopic studies of higher vibrational levels yield valuable informations, regarding,the molecular structure, intra- and inter-molecular interactions, radiationless transitions, intra-molecular vibrational relaxations, multiphoton excitations and chemical reactivities, which cannot be z obtained by other spectroscopic methods. This thesis presents the results of experimental investigations on the overtone spectra of some organic compounds in the liquid phase for the characterization of CH bonds. The spectra in the fifth overtone region (1fiV=6) are recorded using a dual beam thermal lens setup and the lower overtones (.AV=2-5) are recorded spectrophotometrically.The thesis is presented in six chapters.
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
The a/b hybrid-type ν1 fundamental and 2ν2 overtone bands of HOF were investigated by FTIR spectroscopy with a resolution close to 0.008 cm−1. Improved ground state parameters of HOF were determined from a merge of more than 3000 ground state combination differences formed from ν1 and previously measured ν2 transitions with the reported pure rotational lines. Excited state parameters of the v2 = 2 state, ν0 = 2686.924 6(1) and χ22 = −9.942 4(1) cm−1, were determined employing Watson's A-reduced Hamiltonian up to sixth order in I′ representation. The 2ν2 state was found to be unperturbed, the excited state parameters being closely related to those of ν2.
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm−1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT_CKD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm−1, using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm−1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT_CKD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Resumo:
We performed stellar population synthesis on the nuclear and extended regions of NGC 1068 by means of near-infrared spectroscopy to disentangle their spectral energy distribution components. This is the first time that such a technique is applied to the whole 0.8-2.4 mu m wavelength interval in this galaxy. NGC 1068 is one of the nearest and probably the most studied Seyfert 2 galaxy, becoming an excellent laboratory to study the interaction between black holes, the jets that they can produce and the medium in which they propagate. Our main result is that traces of young stellar population are found at similar to 100 pc south of the nucleus. The contribution of a power-law continuum in the centre is about 25 per cent, which is expected if the light is scattered from a Seyfert 1 nucleus. We find peaks in the contribution of the featureless continuum about 100-150 pc from the nucleus on both sides. They might be associated with regions where the jet encounters dense clouds. Further support to this scenario is given by the peaks of hot dust distribution found around these same regions and the H(2) emission-line profile, leading us to propose that the peaks might be associated to regions where stars are being formed. Hot dust also has an important contribution to the nuclear region, reinforcing the idea of the presence of a dense, circumnuclear torus in this galaxy. Cold dust appears mostly in the south direction, which supports the view that the south-west emission is behind the plane of the galaxy and is extinguished very likely by dust in the plane. Intermediate-age stellar population contributes significantly to the continuum, especially in the inner 200 pc.
Resumo:
The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work illustrates the advantages of using p-polarized radiation at an incidence angle of 70 degrees in contrast to the conventional unpolarized beam at normal (or near-normal) incidence for the infrared spectroscopic study of polycarbosilane, polysilazane and polysiloxane thin films synthesized by plasma enhanced chemical vapor deposition (PECVD) and subsequently irradiated with 170 keV He+ ions at fluences from 1 x 10(14) to 1 x 10(16) cm(-2). Several bands not seen using the conventional mode could be observed in the polarized mode. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.
Resumo:
Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.
Resumo:
The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.