973 resultados para Monitoring learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the use of web-based textbook supplementary teaching and learning materials which include multiple choice test banks, animated demonstrations, simulations, quizzes and electronic versions of the text. To gauge their experience of the web-based material students were asked to score the main elements of the material in terms of usefulness. In general it was found that while the electronic text provides a flexible platform for presentation of material there is a need for continued monitoring of student use of this material as the literature suggests that digital viewing habits may mean there is little time spent in evaluating information, either for relevance, accuracy or authority. From a lecturer perspective these materials may provide an effective and efficient way of presenting teaching and learning materials to the students in a variety of multimedia formats, but at this stage do not overcome the need for a VLE such as Blackboard™.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring and enforcement are perhaps the biggest challenges in the design and implementation of environmental policies in developing countries where the actions of many small informal actors cause significant impacts on the ecosystem services and where the transaction costs for the state to regulate them could be enormous. This dissertation studies the potential of innovative institutions based on decentralized coordination and enforcement to induce better environmental outcomes. Such policies have in common that the state plays the role of providing the incentives for organization but the process of compliance happens through decentralized agreements, trust building, signaling and monitoring. I draw from the literatures in collective action, common-pool resources, game-theory and non-point source pollution to develop the instruments proposed here. To test the different conditions in which such policies could be implemented I designed two field-experiments that I conducted with small-scale gold miners in the Colombian Pacific and with users and providers of ecosystem services in the states of Veracruz, Quintana Roo and Yucatan in Mexico. This dissertation is organized in three essays.

The first essay, “Collective Incentives for Cleaner Small-Scale Gold Mining on the Frontier: Experimental Tests of Compliance with Group Incentives given Limited State Monitoring”, examines whether collective incentives, i.e. incentives provided to a group conditional on collective compliance, could “outsource” the required local monitoring, i.e. induce group interactions that extend the reach of the state that can observe only aggregate consequences in the context of small-scale gold mining. I employed a framed field-lab experiment in which the miners make decisions regarding mining intensity. The state sets a collective target for an environmental outcome, verifies compliance and provides a group reward for compliance which is split equally among members. Since the target set by the state transforms the situation into a coordination game, outcomes depend on expectations of what others will do. I conducted this experiment with 640 participants in a mining region of the Colombian Pacific and I examine different levels of policy severity and their ordering. The findings of the experiment suggest that such instruments can induce compliance but this regulation involves tradeoffs. For most severe targets – with rewards just above costs – raise gains if successful but can collapse rapidly and completely. In terms of group interactions, better outcomes are found when severity initially is lower suggesting learning.

The second essay, “Collective Compliance can be Efficient and Inequitable: Impacts of Leaders among Small-Scale Gold Miners in Colombia”, explores the channels through which communication help groups to coordinate in presence of collective incentives and whether the reached solutions are equitable or not. Also in the context of small-scale gold mining in the Colombian Pacific, I test the effect of communication in compliance with a collective environmental target. The results suggest that communication, as expected, helps to solve coordination challenges but still some groups reach agreements involving unequal outcomes. By examining the agreements that took place in each group, I observe that the main coordination mechanism was the presence of leaders that help other group members to clarify the situation. Interestingly, leaders not only helped groups to reach efficiency but also played a key role in equity by defining how the costs of compliance would be distributed among group members.

The third essay, “Creating Local PES Institutions and Increasing Impacts of PES in Mexico: A real-Time Watershed-Level Framed Field Experiment on Coordination and Conditionality”, considers the creation of a local payments for ecosystem services (PES) mechanism as an assurance game that requires the coordination between two groups of participants: upstream and downstream. Based on this assurance interaction, I explore the effect of allowing peer-sanctions on upstream behavior in the functioning of the mechanism. This field-lab experiment was implemented in three real cases of the Mexican Fondos Concurrentes (matching funds) program in the states of Veracruz, Quintana Roo and Yucatan, where 240 real users and 240 real providers of hydrological services were recruited and interacted with each other in real time. The experimental results suggest that initial trust-game behaviors align with participants’ perceptions and predicts baseline giving in assurance game. For upstream providers, i.e. those who get sanctioned, the threat and the use of sanctions increase contributions. Downstream users contribute less when offered the option to sanction – as if that option signal an uncooperative upstream – then the contributions rise in line with the complementarity in payments of the assurance game.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive sampling devices (PS) are widely used for pollutant monitoring in water, but estimation of measurement uncertainties by PS has seldom been undertaken. The aim of this work was to identify key parameters governing PS measurements of metals and their dispersion. We report the results of an in situ intercomparison exercise on diffusive gradient in thin films (DGT) in surface waters. Interlaboratory uncertainties of time-weighted average (TWA) concentrations were satisfactory (from 28% to 112%) given the number of participating laboratories (10) and ultra-trace metal concentrations involved. Data dispersion of TWA concentrations was mainly explained by uncertainties generated during DGT handling and analytical procedure steps. We highlight that DGT handling is critical for metals such as Cd, Cr and Zn, implying that DGT assembly/dismantling should be performed in very clean conditions. Using a unique dataset, we demonstrated that DGT markedly lowered the LOQ in comparison to spot sampling and stressed the need for accurate data calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O curso da Academia Europeia de Polícia designado de “Mentoring, Monitoring and Advising” é essencialmente dirigido a elementos das Forças e Serviços de Segurança que vão desempenhar funções em missões de gestão de crises fora da União Europeia. O esforço cooperacional é no sentido de uniformizar procedimentos quando os elementos das várias políciais da União Europeia vão desempenhar essas missões em países terceiros, sendo relevantes para estas situações as tarefas de orientar, monitorizar e aconselhar. Torna-se desta forma pertinente analisar qual a importância deste curso, organizado pela Guarda Nacional Republicana, no âmbito da formação na Academia Europeia de Polícia. No sentido de analisar da melhor forma a importância suprarreferida, foi utilizado como base de trabalho os Relatórios de Reação à Formação que contêm informação relativo a este curso nos últimos 3 anos. A metodologia adotada neste trabalho de investigação resume-se à análise documental, mais precisamente aos relatórios que contêm questionários onde os participantes e os formadores respondem no final de cada curso para recolher a perceção e opinião dos mesmos. Depois de efetuar a análise, é possível chegar à conclusão de quais os aspetos considerados pelos participantes de pouco ou muito positivo e o que sugerem para os próximos cursos. Concluiu-se que o curso organizado pela Guarda Nacional Republicana encontra-se a um nível bastante satisfatório. No entanto, o curso deveria prolongar-se relativamente ao tempo do mesmo pois os participantes referiram que o período de formação neste âmbito é muito reduzido e desta forma, a atividade torna-se demasiada intensa e cansativa, não conseguindo manter o nível de aprendizagem elevada. Este curso contribui para a obtenção de uma certificação internacional realçando a afirmação da excelência da formação da Guarda Nacional Republicana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors present a proposal to develop intelligent assisted living environments for home based healthcare. These environments unite the chronical patient clinical history sematic representation with the ability of monitoring the living conditions and events recurring to a fully managed Semantic Web of Things (SWoT). Several levels of acquired knowledge and the case based reasoning that is possible by knowledge representation of the health-disease history and acquisition of the scientific evidence will deliver, through various voice based natural interfaces, the adequate support systems for disease auto management but prominently by activating the less differentiated caregiver for any specific need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A densely built environment is a complex system of infrastructure, nature, and people closely interconnected and interacting. Vehicles, public transport, weather action, and sports activities constitute a manifold set of excitation and degradation sources for civil structures. In this context, operators should consider different factors in a holistic approach for assessing the structural health state. Vibration-based structural health monitoring (SHM) has demonstrated great potential as a decision-supporting tool to schedule maintenance interventions. However, most excitation sources are considered an issue for practical SHM applications since traditional methods are typically based on strict assumptions on input stationarity. Last-generation low-cost sensors present limitations related to a modest sensitivity and high noise floor compared to traditional instrumentation. If these devices are used for SHM in urban scenarios, short vibration recordings collected during high-intensity events and vehicle passage may be the only available datasets with a sufficient signal-to-noise ratio. While researchers have spent efforts to mitigate the effects of short-term phenomena in vibration-based SHM, the ultimate goal of this thesis is to exploit them and obtain valuable information on the structural health state. First, this thesis proposes strategies and algorithms for smart sensors operating individually or in a distributed computing framework to identify damage-sensitive features based on instantaneous modal parameters and influence lines. Ordinary traffic and people activities become essential sources of excitation, while human-powered vehicles, instrumented with smartphones, take the role of roving sensors in crowdsourced monitoring strategies. The technical and computational apparatus is optimized using in-memory computing technologies. Moreover, identifying additional local features can be particularly useful to support the damage assessment of complex structures. Thereby, smart coatings are studied to enable the self-sensing properties of ordinary structural elements. In this context, a machine-learning-aided tomography method is proposed to interpret the data provided by a nanocomposite paint interrogated electrically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.