907 resultados para Model selection criteria
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, there were identified five broad selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. After the identification criteria, a survey was elaborated and companies were contacted in order to understand which factors have more weight in their decisions to choose the partners. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Value Analysis. The goal of the paper it's to supply a selection reference model that can represent an orientation/pattern for a decision making on the suppliers/partners selection process
Resumo:
Within Data Envelopment Analysis, several alternative models allow for an environmental adjustment. The majority of them deliver divergent results. Decision makers face the difficult task of selecting the most suitable model. This study is performed to overcome this difficulty. By doing so, it fills a research gap. First, a two-step web-based survey is conducted. It aims (1) to identify the selection criteria, (2) to prioritize and weight the selection criteria with respect to the goal of selecting the most suitable model and (3) to collect the preferences about which model is preferable to fulfil each selection criterion. Second, Analytic Hierarchy Process is used to quantify the preferences expressed in the survey. Results show that the understandability, the applicability and the acceptability of the alternative models are valid selection criteria. The selection of the most suitable model depends on the preferences of the decision makers with regards to these criteria.
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, trough the literature review, there were identified five broad suppliers selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. Thereafter, a survey was elaborated and companies were contacted in order to answer which factors have more relevance in their decisions to choose the suppliers. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Simple Multi-Attribute Rating Technique (SMART). The result of the research undertaken by the authors is a reference model that represents a decision making support for the suppliers/partners selection process.
Resumo:
Information systems are a foundation key element of modern organizations. Quite often, chief executive officers and managers have to decide about the acquisition of new software solution based in an appropriated set of criteria. Analytic Hierarchy Process (AHP) is one technique used to support that kind of decisions. This paper proposes the application of AHP method to the selection of ERP (Enterprise Resource Planning) systems, identifying the set of criteria to be used. A set of criteria was retrieved from the scientific literature and validated through a survey-based approach.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
Globaalin talouden rakenteet muuttuvat jatkuvasti. Yritykset toimivat kansainvälisillä markkinoilla aiempaa enemmän. Tuotannon lisäämiseksi monet yritykset ovat ulkoistaneet tuotteidensa tuki- ja ylläpitotoiminnot halvan työvoiman maihin. Yritykset voivat tällöin keskittää toimintansa ydinosamiseensa. Vapautuneita resursseja voidaan käyttää yrityksen sisäisessä tuotekehityksessä ja panostaa seuraavan sukupolven tuotteiden ja teknologioiden kehittämiseen. Diplomityö esittelee Globaalisti hajautetun toimitusmallin Internet-palveluntarjoajalle jossa tuotteiden tuki- ja ylläpito on ulkoistettu Intiaan. Teoriaosassa esitellään erilaisia toimitusmalleja ja keskitytään erityisesti hajautettuun toimitusmalliin. Tämän lisäksi luetellaan valintakriteerejä joilla voidaan arvioida projektin soveltuvuutta ulkoistettavaksi sekä esitellään mahdollisuuksia ja uhkia jotka sisältyvät globaaliin ulkoistusprosessiin. Käytäntöosassa esitellään globaali palvelun toimittamisprosessi joka on kehitetty Internet-palveluntarjoajan tarpeisiin.
Resumo:
Dans les études sur le transport, les modèles de choix de route décrivent la sélection par un utilisateur d’un chemin, depuis son origine jusqu’à sa destination. Plus précisément, il s’agit de trouver dans un réseau composé d’arcs et de sommets la suite d’arcs reliant deux sommets, suivant des critères donnés. Nous considérons dans le présent travail l’application de la programmation dynamique pour représenter le processus de choix, en considérant le choix d’un chemin comme une séquence de choix d’arcs. De plus, nous mettons en œuvre les techniques d’approximation en programmation dynamique afin de représenter la connaissance imparfaite de l’état réseau, en particulier pour les arcs éloignés du point actuel. Plus précisément, à chaque fois qu’un utilisateur atteint une intersection, il considère l’utilité d’un certain nombre d’arcs futurs, puis une estimation est faite pour le restant du chemin jusqu’à la destination. Le modèle de choix de route est implanté dans le cadre d’un modèle de simulation de trafic par événements discrets. Le modèle ainsi construit est testé sur un modèle de réseau routier réel afin d’étudier sa performance.
Resumo:
The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.
Resumo:
Supplier selection has a great impact on supply chain management. The quality of supplier selection also affects profitability of organisations which work in the supply chain. As suppliers can provide variety of services and customers demand higher quality of service provision, the organisation is facing challenges for making the right choice of supplier for the right needs. The existing methods for supplier selection, such as data envelopment analysis (DEA) and analytical hierarchy process (AHP) can automatically perform selection of competitive suppliers and further decide winning supplier(s). However, these methods are not capable of determining the right selection criteria which should be derived from the business strategy. An ontology model described in this paper integrates the strengths of DEA and AHP with new mechanisms which ensure the right supplier to be selected by the right criteria for the right customer's needs.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
We consider the finite sample properties of model selection by information criteria in conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are consistent in that they will select the true model asymptotically with probability 1. To examine the empirical relevance of this property, Monte Carlo simulations are conducted for a set of non–nested data generating processes (DGPs) with the set of candidate models consisting of all types of model used as DGPs. In addition, not only is the best model considered but also those with similar values of the information criterion, called close competitors, thus forming a portfolio of eligible models. To supplement the simulations, the criteria are applied to a set of economic and financial series. In the simulations, the criteria are largely ineffective at identifying the correct model, either as best or a close competitor, the parsimonious GARCH(1, 1) model being preferred for most DGPs. In contrast, asymmetric models are generally selected to represent actual data. This leads to the conjecture that the properties of parameterizations of processes commonly used to model heteroscedastic data are more similar than may be imagined and that more attention needs to be paid to the behaviour of the standardized disturbances of such models, both in simulation exercises and in empirical modelling.
Resumo:
This review is an output of the International Life Sciences Institute (ILSI) Europe Marker Initiative, which aims to identify evidence-based criteria for selecting adequate measures of nutrient effects on health through comprehensive literature review. Experts in cognitive and nutrition sciences examined the applicability of these proposed criteria to the field of cognition with respect to the various cognitive domains usually assessed to reflect brain or neurological function. This review covers cognitive domains important in the assessment of neuronal integrity and function, commonly used tests and their state of validation, and the application of the measures to studies of nutrition and nutritional intervention trials. The aim is to identify domain-specific cognitive tests that are sensitive to nutrient interventions and from which guidance can be provided to aid the application of selection criteria for choosing the most suitable tests for proposed nutritional intervention studies using cognitive outcomes. The material in this review serves as a background and guidance document for nutritionists, neuropsychologists, psychiatrists, and neurologists interested in assessing mental health in terms of cognitive test performance and for scientists intending to test the effects of food or food components on cognitive function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Body size is directly related to the productive and reproductive performance of beef cattle raised under free-range conditions. In an attempt to better plan selection criteria, avoiding extremes in body size, this study estimated the heritabilities and genetic correlations of yearling hip height (YH) and mature hip height (MH) with selection indices obtained at weaning (WI) and yearling (YI) and mature weight (MW). Data from 102,373 Nelore animals born between 1984 and 2010, which belong to 263 farms that participate in genetic evaluation programmes of beef cattle conducted in Brazil and Paraguay, were used. The (co)variance components and genetic parameters were estimated by Bayesian inference in multi-trait analysis using an animal model. The mean heritabilities for YH, MH and MW were 0. 56 ± 0. 06, 0. 47 ± 0. 02 and 0. 42 ± 0. 02, respectively. The genetic correlation of YH with WI (0. 13 ± 0. 01) and YI (0. 11 ± 0. 01) was practically zero, whereas a higher correlation was observed with MW (0. 22 ± 0. 03). Positive genetic correlations of medium magnitude were estimated between MH and WI and YI (0. 23 ± 0. 01 and 0. 43 ± 0. 02, respectively). On the other hand, a high genetic correlation (0. 68 ± 0. 03) was observed between the indicator traits of mature body size (MH and MW). Considering the top 20 % of sire (896 sires) in terms of breeding values for the yearling index, the rank sire correlations between breeding values for MH and MW was 0. 62. In general, the results indicate that selection based on WI and YI should not lead to important changes in YH. However, an undesired correlated response in mature cow height is expected, particularly when selection is performed using YI. Therefore, changes in the body structure of Nelore females can be obtained when MH and MW is used as a selection criterion for cows. © 2012 Institute of Plant Genetics, Polish Academy of Sciences, Poznan.