993 resultados para Mitochondorial DNA (mtDNA)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

With 210 genera and 2010 species, Cyprinidae is the largest freshwater fish family in the world. Several papers, based on morphological and molecular data, have been published and have led to some solid conclusions, such as the close relationships between North American phoxinins and European leuciscins. However, the relationships among major subgroups of this family are still not well resolved, especially for those East Asian groups. In the present paper, the mitochondrial DNA (mtDNA) control region, 896-956 base pairs, of 17 representative species of East Asian cyprinids was sequenced and compared with those of 21 other cyprinids to study their phylogenetic relationships. After alignment, there were 1051 sites. The comparison between pairwise substitutions and HKY distances showed that the mtDNA control region was suitable for phylogenetic study. Phylogenetic analysis indicated that there are two principal lineages in Cyprinidae: Cyprinine and Leuciscine. In Cyprinine, the relationships could be a basal Labeoinae, an intermediate Cyprininae, and a diversified Barbinae (including Schizothroaxinae). In Leuciscine, Rasborinae is at the basal position; Gobioninae and Leuciscinae are sister groups; the East Asian cultrin-xenocyprinin taxa form a large monophyletic group with some small affiliated groups; and the positions of Acheilognathinae and Tincinae are still uncertain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acipenseriformes is an endangered primitive fish group, which occupies a special place in the history of ideas concerning fish evolution, even in vertebrate evolution. However, the classification and evolution of the fishes have been debated. The mitochondrial DNA (mtDNA) ND4L and partial ND4 genes were first sequenced in twelve species of the order Acipenseriformes, including endemic Chinese species. The following points were drawn from DNA sequences analysis: (i) the two species of Huso can be ascribed to Acipenser; (ii) A. dabryanus is the mostly closely related to A. sinensis, and most likely the landlocked form of A. sinensis; (iii) genus Acipenser in trans-Pacific region might have a common origin; (iv) mtDNA ND4L and ND4 genes are the ideal genetic markers for phylogenetic analysis of the order Acipenseriformes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

人类线粒体DNA(mtDNA)是一个长度16,569bp 的环状分子,编码13 种蛋白 质、22 种tRNA 和2 种rRNA。由于mtDNA 全基因组信息具有缺乏重组、母系 遗传、高突变速率和相对较高的分辨率等特点,近年来已经成为重建人类历史的 重要工具。这些研究已经证实,mtDNA 最古老的六个单倍型类群,L0-L5,在非 洲特异的出现;而6-7 万年前从L3 衍生出的M 和N 两个超类群最终占领了世界 其他地区。然而,mtDNA 全序列研究在世界上某些特定地区尚是一片空白,其 中之一便是作为人类“走出非洲”的关键区域——印度。 为弥补这一空白,我们从 1200 个印度样品中选择了131 个可以代表所有主 要单倍型类群的个体,进行了全基因组扩增和测序,手工重建并软件验证了系统 发育关系树。我们的结果发现了12 个新的印度特有单倍型类群(N5, R7, R8, R30, R31, M34-M40),修订了11 个已知特有单倍型类群(N1d, R5, R6, U2a, U2b, U2c, M2, M4, M5, M6, M30)的定义,详细描述了存在于印度的欧洲特有类群(HV, JT, U, N1, W)。 这一工作产生了多个推论。第一个是关于人类“走出非洲”假说长期以来 存在的争论。欧亚大陆和大洋洲mtDNA 在M 和N(包括R)超类群系统发育关系 上星状和不重叠的分布,表明了人类走出非洲是沿着亚洲海岸线(即所谓的“南 方路线”)的一个快速扩散的过程。第二个推论是关于存在于印度的欧洲特有世 系。与典型的欧洲世系相比,这些世系仅仅存在一到两个突变,从而证实了新石 器时代以来来自于近东新月地带或中亚高原的基因流。第三个推论涉及一个早期 的印度全序列研究。仔细分析其数据表明,他们的数据丢失了很多基部的特有突 变并产生了多个幻影突变,从而证实了系统发育思想对检测数据质量的作用。 随着印度人群 mtDNA 全序列研究的完成,人类mtDNA 系统发育的基本框 架得以建立。人类mtDNA 明显地呈现出大洲特异性分布。目前已经有两种假说用来解释这一现象。传统的观点把这一现象归于遗传漂变;而近期的选择假说认 为选择在人类mtDNA 的分化中扮演了极其重要的角色,而气候是主要的选择压 力。为解决这一争论,我们收集了来自南亚、大洋洲和东亚三个具有不同气候的 地区的mtDNA,使用直接计数的办法比较了各个大洲之间同义突变和异义突变 的差异。结果表明,几乎在所有的基因中,异义突变的数量低于同义突变的数量, 从而表明纯净化选择是人类mtDNA 进化中的主要力量。然而,在这三个大洲之 间没有发现显著的差异,表明mtDNA 在这三个区域上所承受的选择压力基本相 同。这一结果表明,气候不大可能是造成人类mtDNA 分化的主要原因。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

随着社会的进步和医疗卫生水平的不断提高,人类获得了更高的平均寿 命,很多国家都步入了老龄化社会的行列。由于长寿具有遗传的倾向,所以 科学家们致力于人类长寿及衰老性疾病发生机理的研究,目的是为了使人类 在获得更长寿命的同时能够抵御或减缓老年性疾病的侵袭,远离衰老带来的 困扰,享受高质量的生活。 线粒体是真核生物的重要细胞器,具有长度为约为16569bp 的环状 DNA 分子。在人类群体,特别是欧洲群体的相关性研究中,线粒体DNAmtDNA)编码区和控制区的一些多态性位点显示出与长寿及衰老性疾病的 相关。特别是mtDNA 控制区的C150T 变异除了在多个长寿人群中富集之外, 更是具有改变mtDNA 重链复制起始位点的功能。 为了探讨mtDNA 控制区多态性位点与中国汉族长寿人群是否存在相关 性,本研究在中国四川省都江堰地区采集了556 名年龄90 至108 岁的互无 关系的长寿老人血液样本,其中男性202 名,女性354 名。同时还采集了 214 名长寿老人的亲属和312 名无关对照的血液样本,年龄分别在10 至69 岁之间和22 到73 岁之间。我们对这些样本的mtDNA 通过测序和RFLP 等 手段进行了扫描,采集并记录了mtDNA 单倍型类群信息和控制区位点多态 信息。 在该人群中,本研究发现mtDNA 的主要单倍型类群与长寿没有显著的 相关性,总体单倍型类群频率分布在三个组别中基本一致(p=0.318)。对 mtDNA 控制区C150T 变异的频率在三个组别中做了包括总体频率差异,区 分mtDNA 单倍型类群的频率差异,区分样本性别的频率差异以及mtDNA 单倍型类群与性别信息联合的频率差异的分析。虽然在个别的比较中得到了 显著差异,但经过多重检验校正后,结果均变得不显著。此外,对146、152189 和195 等四个同样处于mtDNA 控制区复制起始区域的变异位点的初步 分析,同样没有获得显著的差异。不支持此前在欧洲长寿人群和日本长寿人 群得到的结论。 综上所述,本研究第一次在中国汉族人群中对mtDNA 控制区多态性与 长寿的相关性进行了研究。mtDNA 与人类长寿的关系还有待于更深层次的 机理性研究和功能性研究来揭示。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

本文分析了麂属动物及其近缘种的线粒体DNA(Mitochondrial DNA, mtDNA)和核塘体DNA(Ribosomal DNA, rDNA)限制性片段长度多态性(RFLP),建立了麂属动物mtDNA和rDNA的限制性内切酶间谱。据此计算出各个物种的种内及种间的遗传距离,构建了麂属动物的种内及种间的分子聚类图。结果表明,在现生麂类中,黑麂和贡山麂之间的关缘关系最近,其次是费氏麂;印度麂是一个特化的特种,它和黑麂支系(包括费氏麂、贡山麂和黑麂)可能是从小麂的祖先类群中独立分化出来的。在近缘物种中,毛冠鹿与麂属动物的亲缘关系较近。结合前人有关的工作,计算19种鹿科动物之间的遗传距离并绘制它们的分子聚类图。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

概括了线粒体DNAmtDNA)的特点与其作为遗传标记的优越性,着重回顾了该分子标记在分子生态学多个研究领域的应用,并阐述了其在青藏高原生物多样性、分子系地理学研究中的应用前景.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

牦牛的起源与属级分类学地位至今仍然存在一定的争议.我们测定了家养牦牛和野生牦牛线粒体控制区(D-loop)序列,并以此构建牦牛和牛属、野牛属、水牛属以及非洲水牛属相关种的系统发育树.研究结果表明线粒体D-loop区与Cyt b基因序列在构建牛族的系统发育具有同样重要的价值.系统发育关系显示野牛属的灭绝种草原野牛与现存种美洲野牛先聚合为一单系群,然后再和牦牛形成一单系分支,表明牦牛与野牛属的草原野牛、美洲野牛亲缘关系最近,具有最近的共同祖先,而与牛属的其它亚洲物种亲缘关系较远.因此,本研究不支持将牦牛独立为牦牛属--Poephagus,牛属与野牛属在分类上也应合并为一个属.基于上述研究结果和化石证据,我们进一步对牦牛起源的历史背景进行了讨论,认为牦牛与野牛属的分化是由于第四纪气候变化在欧亚大陆发生的,野牛通过白令陆桥进入北美;冰期结束后,由于欧亚大陆其它地区温度升高,牦牛只能局限分布在较为寒冷的青藏高原;而野牛属在北美先后分化为草原野牛和美洲野牛,前者可能是后者的直接祖先.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The complete mitochondrial DNA (mtDNA) cytochrome b gene (1140 bp) was sequenced in Herzenstein macrocephalus and Gymnocypris namensis and in 13 other species and sub-species (n = 22), representing four closely related genera in the subfamily Schizothoracinae. Conflicting taxonomies of H. macrocephalus and G. namensis have been proposed because of the character instability among individuals. Parsimony, maximum likelihood and Bayesian methods produced phylogenetic trees with the same topology and resolved several distinctive clades. Previous taxonomic treatments, which variously placed these two species of separate genera or as sub-species, are inconsistent with the mtDNA phylogeny. Both H. macrocephalus and G. namensis appear in a well-supported clade, which also includes nine species of Schizopygopsis, and hence should be transferred to the genus Schizopygopsis. Morphological changes are further illustrated, and their adaptive evolution in response to the local habitat shifts during the speciation process appears to be responsible for conflicting views on the systematics of these two species and hence the contrasting taxonomic treatments. These species are endemic to the Qinghai-Tibetan Plateau, a region with a history of geological activity and a rich diversity of habitats that may have result in the parallel and reversal evolution of some morphological characters used in their taxonomies. Our results further suggest that speciation and morphological evolution of fishes in this region may be more complex than those previously expected. (c) 2007 The Authors Journal compilation (c) 2007 The Fisheries Society of the British Isles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phylogenetic relationships of six species of Ochotona were investigated using mitochondrial DNA (mtDNA) restriction-site analysis. The phylogenetic tree constructed using PAUP was based on 62 phylogenetically informative sites with O. erythrotis designated as an outgroup. Two clades were evident. One contained O. curzoniae, O. huangensis, and O. thibetana. in the second, O. daurica was a sister taxon of O. cansus. The five species appear to come from different maternal lineages. The branching structure of the tree and sequence divergence confirm that huangensis and cansus are distinct species, and that mol-osa is a synonym of O. cansus rather than O. thibetana. Divergence time, estimated from genetic distances, indicates that the ancestors of the two maternal lineages diverged ca. 6.5 x 10(6) years ago. O. curzoniae diverged from O. huangensis, and O. daurica diverged from O. cansus, at about the same time (ca. 3.4 x 10(6) years ago). These data suggest a period of rapid radiation of the genus Ochotona in China, perhaps during the late Pliocene. These calculations correspond roughly to tectonic events and environmental changes in China throughout this period, and appear to be substantiated by the fossil record.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Restriction site mapping of mitochondrial DNA (mtDNA) with 16 restriction endonucleases was used to examine the phylogenetic relationships of Ochotona cansus, O. huangensis, O. thibetana, O. curzoniae and O. erythrotis. A 1-kb length variation between O. erythrotis of subgenus Pika and other four species of subgenus Ochotona was observed, which may be a useful genetic marker for identifying the two subgenera. The phylogenetic tree constructed using PAUP based on 61 phylogenetically informative sites suggests that O. erythrotis diverged first, followed by O. cansus, while O. curzoniae and O. huangensis are sister taxa related to O. thibetana, The results indicate that both O. cansus and O. huangensis should be treated as independent species. If the base substitution rate of pikas mtDNA was 2% per million years, then the divergence time of the two subgenera, Pika and Ochotana, is about 8.8 Ma ago of late Miocence, middle Bao-dian of Chinese mammalian age, and the divergence of the four species in subgenus Ochotona would have occurred about 2.5 - 4.2 Ma ago, Yushean of Chinese mammalian age. This calculation appears to be substantiated by the fossil record.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wydział Biologii: Instytut Antropologii

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: In order to isolate the â??bestâ?? sperm for assisted conception a discontinuous two-step density gradient centrifugation is usually employed. This technique is known to isolate a subpopulation with good motility, morphology and nuclear DNA (nDNA) integrity. As yet its ability to isolate sperm with unfragmented mitochondrial DNA (mtDNA) is unknown. Methods: Semen was obtained from men (n=28) attending our Regional Fertility Centre for infertility investigations. We employed a modified long polymerase chain reaction to study mtDNA and a modified alkaline Comet assay to determine nDNA fragmentation. Results: The high- density fraction displayed significantly more wild type mtDNA (75% of samples) than that of the low- density fraction (25% of samples). In the high-density fraction, there was a higher incidence of single, rather than double or multiple deletions and the deletions were predominantly small scale (0.1-4.0kb). There was a strong correlation between nDNA fragmentation, the number of mtDNA deletions (r=0.7, p

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Mitochondria are vital to sperm as their motility powerhouses. They are also the only animal organelles with their own unique genome; encoding subunits for the complexes required for the electron transfer chain. Methods: A modified long PCR technique was used to study mitochondrial DNA (mtDNA) in ejaculated and testicular sperm samples from fertile men (n=11) and testicular sperm from men with obstructive azoospermia (n=25). Nuclear DNA fragmentation was measured by an alkaline single cell gel electrophoresis (COMET) assay. Results: Wild-type mtDNA was detected in only 60% of fertile mens�??�?�¢?? testicular sperm, 50% of their ejaculated sperm and 46% of testicular sperm from men with obstructive azoospermia. The incidence of mitochondrial deletions in testicular sperm of fertile and infertile men was not significantly different but the mean size of the deletions was significantly less in testicular sperm from fertile men compared with men with obstructive azoospermia (p<0.02). Nuclear DNA fragmentation in testicular sperm from fertile men and men with obstructive azoospermia was not significantly different. Conclusion: Multiple mtDNA deletions are common in testicular and ejaculated sperm from both fertile and infertile men. However, in males with obstructive azoospermia the mtDNA deletions in testicular sperm are of a larger scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although several studies have described an association between Alzheimer disease (AD) and genetic variation of mitochondrial DNA (mtDNA), each has implicated different mtDNA variants, so the role of mtDNA in the etiology of AD remains uncertain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.