912 resultados para Mesenchymal stromal cells
Resumo:
Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.
Resumo:
The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-alpha, IL-6 and oxidative stress measured by Amplex(A (R)) reagent were observed. The level of TGF-beta 1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.
Resumo:
Mesenchymal stem cells (MSCs) have received great attention due to their remarkable regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. Although conventionally isolated from the bone marrow, they are known to exist in all tissues and organs, raising the question on whether they are identical cell populations or have important differences at the molecular level. To better understand the relationship between MSCs residing in different tissues, we analyzed the expression of genes related to pluripotency (SOX2 and OCT-4) and to adipogenic (C/EBP and ADIPOR1), osteogenic (OMD and ALP), and chondrogenic (COL10A1 and TRPV4) differentiation in cultures derived from murine endodermal (lung) and mesodermal (adipose) tissue maintained in different conditions. MSCs were isolated from lungs (L-MSCs) and inguinal adipose tissue (A-MSCs) and cultured in normal conditions, in overconfluence or in inductive medium for osteogenic, adipogenic, or chondrogenic differentiation. Cultures were characterized for morphology, immunophenotype, and by quantitative real-time reverse transcription-polymerase chain reaction for expression of pluripotency genes or markers of differentiation. Bone marrow-derived MSCs were also analyzed for comparison of these parameters. L-MSCs and A-MSCs exhibited the typical morphology, immunophenotype, and proliferation and differentiation pattern of MSCs. The analysis of gene expression showed a higher potential of adipose tissue-derived MSCs toward the osteogenic pathway and of lung-derived MSCs to chondrogenic differentiation, representing an important contribution for the definition of the type of cell to be used in clinical trials of cell therapy and tissue engineering.
Resumo:
Background aims. Mesenchymal stromal cells (MSC) are being used to treat and prevent a variety of clinical conditions. To be readily available, MSC must be cryopreserved until infusion. However, the optimal cryopreservation methods, cryoprotector solutions and MSC sensitivity to dimethyl sulfoxide (DMSO) exposure are unknown. This study investigated these issues. Methods. MSC samples were obtained from human umbilical cord (n = 15), expanded with Minimal Essential Medium-alpha (alpha-MEM) 10% human serum (HS), resuspended in 25 mL solution (HS, 10% DMSO, 20% hydroxyethyl starch) and cryopreserved using the BioArchive (R) system. After a mean of 18 +/- 7 days, cell suspensions were thawed and diluted until a DMSO concentration of 2.5% was reached. Samples were tested for cell quantification and viability, immunophenotype and functional assays. Results. Post-thaw cell recovery: 114 +/- 2.90% (mean +/- SEM). Recovery of viable cells: 93.46 +/- 4.41%, 90.17 +/- 4.55% and 81.03 +/- 4.30% at 30 min, 120 min and 24 h post-thaw, respectively. Cell viability: 89.26 +/- 1.56%, 72.71 +/- 2.12%, 70.20 +/- 2.39% and 63.02 +/- 2.33% (P<0.0001) pre-cryopreservation and 30 min, 120 min and 24 h post-thaw, respectively. All post-thaw samples had cells that adhered to culture bottles. Post-thaw cell expansion was 4.18 +/- 0.17 X, with a doubling time of 38 +/- 1.69 h, and their capacity to inhibit peripheral blood mononuclear cells (PBMC) proliferation was similar to that observed before cryopreservation. Differentiation capacity, cell-surface marker profile and cytogenetics were not changed by the cryopreservation procedure. Conclusions. A method for cryopreservation of MSC in bags, in xenofree conditions, is described that facilitates their clinical use. The MSC functional and cytogenetic status and morphologic characteristics were not changed by cryopreservation. It was also demonstrated that MSC are relatively resistant to exposure to DMSO, but we recommend cell infusion as soon as possible.
Resumo:
Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-gamma levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-beta 1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional beta-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. Diabetes 61:2534-2545, 2012
Resumo:
Human mesenchymal stem cells (hMSCs) are adult multipotent cells that have high therapeutic potential due to their immunological properties. They can be isolated from several different tissues with bone marrow (BM) being the most common source. Because the isolation procedure is invasive, other tissues such as human umbilical cord vein (UCV) have been considered. However, their interchangeability remains unclear. In the present study, total protein extracts of BM-hMSCs and UCV-hMSCs were quantitatively compared using gel-LC-MS/MS. Previous SAGE analysis of the same cells was re-annotated to enable comparison and combination of these two data sets. We observed a more than 63% correlation between proteomic and transcriptomic data. In silico analysis of highly expressed genes in cells of both origins suggests that they can be modulated by microRNA, which can change protein abundance. Our results showed that MSCs from both tissues shared high similarity in metabolic and functional processes relevant to their therapeutic potential, especially in the immune system process, response to stimuli, and processes related to the delivery of the hMSCs to a given tissue, such as migration and adhesion. Hence, our results support the idea that the more accessible UCV could be a potentially less invasive source of MSCs.
Resumo:
The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.
Resumo:
BACKGROUND There is evidence that tumour-stroma interactions have a major role in the neoplastic progression of pancreatic ductal adenocarcinoma (PDAC). Tumour budding is thought to reflect the process of epithelial-mesenchymal transition (EMT); however, the relationship between tumour buds and EMT remains unclear. Here we characterize the tumour-budding- and stromal cells in PDAC at protein and mRNA levels concerning factors involved in EMT. METHODS mRNA in situ hybridisation and immunostaining for E-cadherin, β-catenin, SNAIL1, ZEB1, ZEB2, N-cadherin and TWIST1 were assessed in the main tumour, tumour buds and tumour stroma on multipunch tissue microarrays from 120 well-characterised PDACs and associated with the clinicopathological features, including peritumoural (PTB) and intratumoural (ITB) budding. RESULTS Tumour-budding cells showed increased levels of ZEB1 (P<0.0001) and ZEB2 (P=0.0119) and reduced E-cadherin and β-catenin (P<0.0001, each) compared with the main tumour. Loss of membranous β-catenin in the main tumour (P=0.0009) and tumour buds (P=0.0053), without nuclear translocation, as well as increased SNAIL1 in tumour and stromal cells (P=0.0002, each) correlated with high PTB. ZEB1 overexpression in the main tumour-budding and stromal cells was associated with high ITB (P=0.0084; 0.0250 and 0.0029, respectively) and high PTB (P=0.0005; 0.0392 and 0.0007, respectively). ZEB2 overexpression in stromal cells correlated with higher pT stage (P=0.03), lymphatic invasion (P=0.0172) and lymph node metastasis (P=0.0152). CONCLUSIONS In the tumour microenvironment of phenotypically aggressive PDAC, tumour-budding cells express EMT hallmarks at protein and mRNA levels underlining their EMT-type character and are surrounded by stromal cells expressing high levels of the E-cadherin repressors ZEB1, ZEB2 and SNAIL1, this being strongly associated with the tumour-budding phenotype. Moreover, our findings suggest the existence of subtypes of stromal cells in PDAC with phenotypical and functional heterogeneity.
Resumo:
BACKGROUND Clinical observations indicate that the presence of nucleus pulposus (NP) tissue during spinal fusion hinders the rate of disc ossification. While the underlying mechanism remains unknown, this observation could be due to incomplete removal of NP cells (NPCs) that secrete factors preventing disc calcification, such as bone morphogenetic protein (BMP) antagonists including noggin and members of the DAN (differential screening selected gene aberrative in neuroblastoma) family. METHODS Monolayer human bone marrow-derived mesenchymal stem cells (MSCs) were cocultured withNPCs and annulus fibrosus cells (AFCs) embedded in alginate for 21 days. At the end of coculture, MSCs were stained for mineral deposition by alizarin red, and relative expression of bone-related genes [Runt-related transcription factor 2, (RUNX2), Osteopontin (OPN), and Alkaline phosphatase (ALP)] and ALP activity were analyzed. Relative expression of three BMP antagonists, chordin (CHRD), gremlin (GREM1), and noggin (NOG), was determined in primary human NPCs and AFCs. These cells were also stained for Gremlin and Noggin by immunocytochemistry. RESULTS Alizarin red staining showed that MSC osteogenesis in monolayer cultures was inhibited by coculture with NPCs or AFCs. ALP activity and RT-PCR analyses confirmed these results and demonstrated inhibition of osteogenesis of MSC in the presence of disc cells. NOG was significantly up-regulated in MSCs after coculture. Relative gene expression of intervertebral disc (IVD) cells showed higher expression of GREM1 in NPCs than in AFCs. CONCLUSIONS We show that primary IVD cells inhibit osteogenesis of MSCs. BMP inhibitors NOG, GREM1 and CHRD were expressed in IVD cells. GREM1 appears to be differentially expressed in NPCs and AFCs. Our results have implications for the design and development of treatments for non-union in spinal fusion.
Resumo:
Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^
Resumo:
Endochondral bone is formed during an avascular period in an environment of low oxygen. Under these conditions, pluripotential mesenchymal stromal cells preferentially differentiate into chondrocytes and form cartilage. In this study, we investigated the hypothesis that oxygen tension modulates bone mesenchymal cell fate by altering the expression of genes that function to promote chondrogenesis. Microarray of RNA samples from ST2 cells revealed significant changes in 728 array elements (P < 0.01) in response to hypoxia. Real-time PCR on these RNA samples, and separate samples from C3H10T1/2 cells, revealed hypoxia-induced changes in the expression of additional genes known to be expressed by chondrocytes including Sox9 and its downstream targets aggrecan and Col2a. These changes were accompanied by the accumulation of mucopolysacharide as detected by alcian blue staining. To investigate the mechanisms responsible for upregulation of Sox9 by hypoxia, we determined the effect of hypoxia on HIF-1 alpha levels and Sox9 promoter activity in ST2 cells. Hypoxia increased nuclear accumulation of HIF-1 alpha and activated the Sox9 promoter. The ability of hypoxia to transactivate the Sox9 promoter was virtually abolished by deletion of HIF-1 alpha consensus sites within the proximal promoter. These findings suggest that hypoxia promotes the differentiation of mesenchymal cells along a chondrocyte pathway in part by activating Sox-9 via a HIF-1 alpha-dependent mechanism. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background aims: The selection of medium and associated reagents for human mesenchymal stromal cell (hMSC) culture forms an integral part of manufacturing process development and must be suitable for multiple process scales and expansion technologies. Methods: In this work, we have expanded BM-hMSCs in fetal bovine serum (FBS)- and human platelet lysate (HPL)-containing media in both a monolayer and a suspension-based microcarrier process. Results: The introduction of HPL into the monolayer process increased the BM-hMSC growth rate at the first experimental passage by 0.049 day and 0.127/day for the two BM-hMSC donors compared with the FBS-based monolayer process. This increase in growth rate in HPL-containing medium was associated with an increase in the inter-donor consistency, with an inter-donor range of 0.406 cumulative population doublings after 18 days compared with 2.013 in FBS-containing medium. Identity and quality characteristics of the BM-hMSCs are also comparable between conditions in terms of colony-forming potential, osteogenic potential and expression of key genes during monolayer and post-harvest from microcarrier expansion. BM-hMSCs cultured on microcarriers in HPL-containing medium demonstrated a reduction in the initial lag phase for both BM-hMSC donors and an increased BM-hMSC yield after 6 days of culture to 1.20 ± 0.17 × 105 and 1.02 ± 0.005 × 105 cells/mL compared with 0.79 ± 0.05 × 105 and 0.36 ± 0.04 × 105 cells/mL in FBS-containing medium. Conclusions: This study has demonstrated that HPL, compared with FBS-containing medium, delivers increased growth and comparability across two BM-hMSC donors between monolayer and microcarrier culture, which will have key implications for process transfer during scale-up.
Resumo:
The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.
Resumo:
The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.