973 resultados para Marine Natural-products
Resumo:
This work aimed at the isolation and structural/functional characterization of a phospholipase A(2) (CgPLA(2)) from the extract of the anemone Condylactis gigantea. CgPLA2 was isolated with a high purity level through three chromatographic steps, showing pT8.6 and molecular weights of 14,500 and 29,000 for the monomer and dimer, respectively. CgPLA2 showed a high catalytic activity upon fluorescent phospholipids inducing no direct hemolytic activity. This enzyme, which is Ca2+-dependent, showed a lower stability against temperature and pH variations when compared with snake venom enzymes. The enzymatic activity was significantly reduced or completely abolished after chemical modification of CgPLA2 with BPB. Its cDNA was then obtained, with 357 base pairs which codified for a mature protein of 119 amino acid residues. A comparative analysis of the primary structure of CgPLA2 revealed 84%, 61%, 43% and 42% similarity to the PLA2s from Adamsia carciniopados, Nematostella vectensis, Vipera russelli russelli and Both raps jararacussu, respectively. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Light-microscopic and electron-microscopic studies of the tropical marine sponge Haliclona sp. (Or der: Haplosclerida Family: Haliclonidae) from Heron Island, Great Barrier Reef, have revealed that this sponge is characterized by the presence of dinoflagellates and by nematocysts. The dinoflagellates are 7-10 mu m in size, intracellular, and contain a pyrenoid with a single stalk, whereas the single chloroplast is branched, curved, and lacks grana. Mitochondria are present, and the nucleus is oval and has distinct chromosomal structure. The dinoflagellates are morphologically similar to Symbiodinium microadriaticum, the common intracellular symbiont of corals, although more detailed biochemical and molecular studies are required to provide a precise taxonomic assignment. The major sponge cell types found in Haliclona sp, are spongocytes, choanocytes, and archaeocytes; groups of dinoflagellates are enclosed within large vacuoles in the archaeocytes. The occurrence of dinoflagellates in marine sponges has previously been thought to be restricted to a small group of sponges including the excavating hadromerid sponges; the dinoflagellates in these sponges are usually referred to as symbionts. The role of the dinoflagellates present in Haliclona sp. as a genuine symbiotic partner requires experimental investigation. The sponge grows on coral substrates, from which it may acquire the nematocysts, and shows features, such as mucus production, which are typical of some excavating sponges. The cytotoxic alkaloids, haliclonacyclamines A and B, associated with Haliclona sp. are shown by Percoll density gradient fractionation to be localized within the sponge cells rather than the dinoflagellates. The ability to synthesize bioactive compounds such as the haliclonacyclamines may help Haliclona sp. to preserve its remarkable ecological niche.
Resumo:
Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various cancer cell lines and soft tissue sarcoma cell lines. In phase I studies tumor responses were observed also in osteosarcomas and different soft tissue sarcoma subtypes. The most common toxicities were myelosuppression and transient elevation of liver function tests, which could be reduced by dexamethasone premedication. The efficacy of trabectedin was established in three phase II studies where it was administered at 1.5 mg/m2 as a 24 h intravenous infusion repeated every three weeks, in previously treated patients. The objective response rate was 3.7%-8.3% and the tumor control rate (which included complete response, partial response and stable disease) was obtained in half of patients for a median overall survival reaching 12 months. In nonpretreated patients the overall response rate was 17%. Twenty-four percent of patients were without progression at six months. The median overall survival was almost 16 months with 72% surviving at one year. Predictive factors of response are being explored to identify patients who are most likely to respond to trabectedin. Combination with other agents are currently studied with promising results. In summary trabectedin is an active new chemotherapeutic agents that has demonstrated its role in the armamentarium of treatments for patients with sarcomas.
Resumo:
The synthesis of various polycyclic systems containing a C3aNi bond between a hexahydropyrrolo[2,3-b]indole and an indole tryptophan is described here. A series of experiments were performed to determine the best combination of five orthogonal protecting groups and the best reaction conditions for formation of said bond, which is a common feature among many recently discovered marine natural products.
Resumo:
This review covers recent literature on the lamellarins, a family of marine natural products, and related analogs, encompassing synthetic strategies for total synthesis, structure-activity relationships (SAR), and studies on mechanisms of biological action, namely in the context of antitumor activity. It reviews work published from January 2008 to December 2010.
Resumo:
Lamellarins are a large family of marine alkaloids with potential anticancer activity that have been isolated from diverse marine organisms, mainly ascidians and sponges. All lamellarins feature a 3,4-diarylpyrrole system. Pentacyclic lamellarins, whose polyheterocyclic system has a pyrrole core, are the most active compounds. Some of these alkaloids are potently cytotoxic to various tumor cell lines. To date, Lam-D and Lam-H have been identified as lead compounds for the inhibition of topoisomerase I and HIV-1 integrase, respectively nuclear enzymes which are over-expressed in deregulation disorders. Moreover,these compounds have been reported for their efficacy in treatment of multi-drug resistant (MDR) tumors cells without mediated drug efflux, as well as their immunomodulatory activity and selectivity towards melanoma cell lines. This article is an overview of recent literature on lamellarins, encompassing their isolation, recent synthetic strategies for their total synthesis, the preparation of their analogs, studies on their mechanisms of action, and their structure-activity relationships (SAR).
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
Barmumycin was isolated from an extract of the marine actinomycete Streptomyces sp. BOSC-022A and found to be cytotoxic against various human tumor cell lines. Based on preliminary one- and two-dimensional 1H- and 13C-NMR spectra, the natural compound was initially assigned the structure of macrolactone-type compound 1, which was later prepared by two different routes. However, major spectroscopic differences between isolated barmumycin and 1 led to revision of the proposed structure as E-16. Based on synthesis of this new compound, and subsequent spectroscopic comparison of it to an authentic sample of barmumycin, the structure of the natural compound was indeed confirmed as that of E-16.
Resumo:
The synthesis of various polycyclic systems containing a C3a-Ni bond between a hexahydropyrrolo[2,3-b]indole and an indole tryptophan is described here. A series of experiments were performed to determine the best combination of five orthogonal protecting groups and the best reaction conditions for formation of said bond, which is a common feature among many recently discovered marine natural products.
Resumo:
Barmumycin was isolated from an extract of the marine actinomycete Streptomyces sp. BOSC-022A and found to be cytotoxic against various human tumor cell lines. Based on preliminary one- and two-dimensional 1H- and 13C-NMR spectra, the natural compound was initially assigned the structure of macrolactone-type compound 1, which was later prepared by two different routes. However, major spectroscopic differences between isolated barmumycin and 1 led to revision of the proposed structure as E-16. Based on synthesis of this new compound, and subsequent spectroscopic comparison of it to an authentic sample of barmumycin, the structure of the natural compound was indeed confirmed as that of E-16.
Resumo:
Many bioactive products from benthic invertebrates mediating ecological interactions have proved to reduce predation, but their mechanisms of action, and their molecular identities, are usually unknown. It was suggested, yet scarcely investigated, that nutritional quality interferes with defensive metabolites. This means that antifeedants would be less effective when combined with energetically rich prey, and that higher amounts of defensive compounds would be needed for predator avoidance. We evaluated the effects of five types of repellents obtained from Antarctic invertebrates, in combination with diets of different energetic values. The compounds came from soft corals, ascidians and hexactinellid sponges; they included wax esters, alkaloids, a meroterpenoid, a steroid, and the recently described organic acid, glassponsine. Feeding repellency was tested through preference assays by preparing diets (alginate pearls) combining different energetic content and inorganic material. Experimental diets contained various concentrations of each repellent product, and were offered along with control compound-free pearls, to the Antarctic omnivore amphipod Cheirimedon femoratus. Meridianin alkaloids were the most active repellents, and wax esters were the least active when combined with foods of distinct energetic content. Our data show that levels of repellency vary for each compound, and that they perform differently when mixed with distinct assay foods. The natural products that interacted the most with energetic content were those occurring in nature at higher concentrations. The bioactivity of the remaining metabolites tested was found to depend on a threshold concentration, enough to elicit feeding repellence, independently from nutritional quality.
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
The design and synthesis of Lamellarin D conjugates with a nuclear localization signal peptide and a poly(ethylene glycol)-based dendrimer are described. Conjugates 1-4 were obtained in 8-84% overall yields from the corresponding protected Lamellarin D. Conjugates 1 and 4 are 1.4 to 3.3-fold more cytotoxic than the parent compound against three human tumor cell lines(MDA-MB-231 breast, A-549 lung, and HT-29 colon). Besides, conjugates 3, 4 showed a decrease in activity potency in BJ skin fibroblasts, a normal cell culture. Cellular internalization was analyzed and nuclear distribution pattern was observed for 4, which contains a nuclear localization signalling sequence.