948 resultados para Maple Molecular Mechanics Water
Resumo:
Coordination-driven self-assembly of dinuclear half-sandwich p-cymene ruthenium(II) complexes Ru-2(mu-eta(4)-C2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) and Ru-2(mu-eta(4)-C6H2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) separately with imidazole-based tritopic donors (L-1-L-2) in methanol yielded a series of hexanuclear 3+2] trigonal prismatic cages (2-5), respectively L-1 = 1,3,5-tris(imidazole-1-yl) benzene; L-2 = 4,4',4 `'-tris(imidazole-1-yl) triphenylamine]. All the self-assembled cages 2-5 were characterized by various spectroscopic techniques (multinuclear NMR, Infra-red and ESI-MS) and their sizes, shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) computation. Despite the possibility due to the free rotation of donor sites of imidazole ligands, of two different atropoisomeric prismatic cages (C-3h or C-s) and polymeric product, the self-selection of single (C(3)h) conformational isomeric cages as the only product is a noteworthy observation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations provide a powerful tool for studying chemical reactions, especially in complex biochemical systems. In most works to date, the quantum region is kept fixed throughout the simulation and is defined in an ad hoc way based on chemical intuition and available computational resources. The simulation errors associated with a given choice of the quantum region are, however, rarely assessed in a systematic manner. Here we study the dependence of two relevant quantities on the QM region size: the force error at the center of the QM region and the free energy of a proton transfer reaction. Taking lysozyme as our model system, we find that in an apolar region the average force error rapidly decreases with increasing QM region size. In contrast, the average force error at the polar active site is considerably higher, exhibits large oscillations and decreases more slowly, and may not fall below acceptable limits even for a quantum region radius of 9.0 A. Although computation of free energies could only be afforded until 6.0 A, results were found to change considerably within these limits. These errors demonstrate that the results of QM/MM calculations are heavily affected by the definition of the QM region (not only its size), and a convergence test is proposed to be a part of setting up QM/MM simulations.
Resumo:
Based on the experimental data of scanning tunneling microscopy (STM), models of three-stranded braid-like DNAs composed by three kinds of base triplets AAA, TAT and GCA were constructed. We investigated the braid-like DNAs and their comparative tripler DNAs using a molecular mechanics method. The three strands of braid-like DNAs are proven equivalent, while those of tripler DNAs are not. The conformational energies for braid-like DNAs were found to be higher than that for tripler DNAs. Each period in one strand of braid-like DNA has 18 nucleotides, half of which are right-handed, while the other half are left-handed. Additional discussions concerning sugar puckering modes and the H-bonds are also included. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.
Resumo:
A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. Effect of pH on adsorption on MB and NMB was investigated. Binding rate constant analysis showed that both MB and NMB on bare SOWG demonstrates larger association constants than those on ODS-SOWG. Interactions of NIB and NMB on bare SOWG and ODS-SOWG were analyzed by molecular mechanics calculation method. The binding energy change was in the following order: ENMB-bare > EMB-bare > ENMB-ODS > EMB-ODS. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Contrary to the traditional view, recent studies suggest that diabetes mellitus has an adverse influence on male reproductive function. Our aim was to determine the affect of diabetes on the testicular environment by identifying and then assessing perturbations in small molecule metabolites. Testes were obtained from control and streptozotocin induced diabetic C57BL/6 mice, two, four and eight weeks post treatment. Diabetic status was confirmed by HbA1c, non fasting blood glucose, physiological condition and body weight. Protein free, low molecular weight, water soluble extracts were assessed using 1H NMR spectroscopy. Principal Component Analysis of the derived profiles was used to classify any variations and specific metabolites were identified based on their spectral pattern. Characteristic metabolite profiles were identified for control and diabetic animals with the most distinctive being from mice with the greatest physical deterioration and loss of bodyweight. Eight streptozotocin treated animals did not develop diabetes and displayed profiles similar to controls. Diabetic mice had decreases in creatine, choline and carnitine and increases in lactate, alanine and myo-inositol. Betaine levels were found to be increased in the majority of diabetic mice but decreased in two animals with severe loss of body weight and physical condition. The association between perturbations in a number of small molecule metabolites known to be influential in sperm function, with diabetic status and physiological condition, adds further impetus to the proposal that diabetes influences important spermatogenic pathways and mechanisms in a subtle and previously unrecognised manner.
Resumo:
The effect of tacticity on the conformational properties of poly(olefin sulfone)s was studied. Tactic polymers, prepared from racemic thiirane monomers using chiral inititators were compared with atactic polymers prepared by free radical co-polymerisation of the 1-olefin with sulfur dioxide. Analysis of the XRD patterns showed that the tactic polymers formed more ordered structures in the bulk with longer layer spacings, consistent with a model in which their side chains meet at the tips in contrast with the atactic polymers whose side chains interdigitate. 13C MAS nmr experiments suggest that as tacticity increases so too does the proportion of C-S bonds in the gauche conformation, however the proportion of S-C bonds in the trans conformation falls, in contrast to a reported molecular mechanics study. Finally, DSC measurements on the polymers with longer side chains showed the presence of two endotherms on heating, illustrating definite liquid crystalline behaviour.
Resumo:
The molecular recognition and attachment of the CD4 molecule and the HIV envelope glycoprotein (gp120) might be described as a consecutive three-step molecular recognition process. 1. (a) Long range interaction: electrostatic pre-orientation, 2. (b) short range interaction: electronic attachment followed by a ‘Locking-in’ (via aromatic ring orientation) and 3. (c) internal interaction (induced fit): conformational readjustment of the protein molecules. On the basis of the preliminary investigations (X-ray structures of CD4 and biological studies of CD4 and gp120 point mutants) we described a computational model. This approach consists of empirical calculations as well as ab initio level of quantum chemistry. The conformational analysis of the wild type and mutant CD4 molecules was supported by molecular mechanics and dynamics (Amber force field). The latter analysis involves the application of a novel method, the Amino Acid Conformation Assignment of Proteins (ACAP) software, developed for the notation of secondary protein structures. According to the cardinal role of the electrostatic factors during this interaction, several ab initio investigations were performed for better understanding of the recognition process on submolecular level. Using the above mentioned computational model, we could interpret the basic behaviours and predict some additional features of CD4-gp120 interaction, in spite of the missing gp120 X-ray structure.
Metabolic profile changes in the testes of mice with streptozotocin-induced type 1 diabetes mellitus
Resumo:
Contrary to the traditional view, recent studies suggest that diabetes mellitus has an adverse influence on male reproductive function. Our aim was to determine the effect of diabetes on the testicular environment by identifying and then assessing perturbations in small molecule metabolites. Testes were obtained from control and streptozotocin-induced diabetic C57BL/6 mice, 2, 4 and 8 weeks post-treatment. Diabetic status was confirmed by glycated haemoglobin, non-fasting blood glucose, physiological condition and body weight. A novel extraction procedure was utilized to obtain protein free, low-molecular weight, water soluble extracts which were then assessed using H-1 nuclear magnetic resonance spectroscopy. Principal component analysis of the derived profiles was used to classify any variations, and specific metabolites were identified based on their spectral pattern. Characteristic metabolite profiles were identified for control and type 1 diabetic animals with the most distinctive being from mice with the largest physical deterioration and loss of body weight. Eight streptozotocin-treated animals did not develop diabetes and displayed profiles similar to controls. Diabetic mice had decreases in creatine, choline and carnitine and increases in lactate, alanine and myo-inositol. Betaine levels were found to be increased in the majority of diabetic mice but decreased in a few animals with severe loss of body weight and physical condition. The association between perturbations in a number of small molecule metabolites known to be influential in sperm function, with diabetic status and physiological condition, adds further impetus to the proposal that diabetes influences important spermatogenic pathways and mechanisms in a subtle and previously unrecognized manner.
Resumo:
This paper describes the use of molecular mechanics to model the geometry of the sodium complex of a calix[4] arene tetraester, in the 1,3-alternate conformation 1. Partial charges were assigned to the calixarene on the basis of semi-empirical (AM1, PM3, MNDO, INDO, CNDO and ZINDO) calculations and the binding of the sodium ion to the calixarene was modelled using molecular mechanics. Agreement between the optimised and X-ray structures of the complex was very good. The effect of placing the cation in different starting positions on the energy-minimised geometry of the complex is described.
Structural and kinetic studies of spin crossover in an Iron(II) complex with a novel tripodal ligand
Resumo:
Configurational and ligand conformational influences on the kinetics of (1)A(1) reversible arrow T-5(2) spin crossover in the Fe(II) complex with the novel tripodal ligand, 1,1,1-tris((N-(2-pyridylmethyl)-N-methylamino)methyl)ethane (tptMetame), have been explored. Despite having six chelate rings and three chiral nitrogen atoms, only one enantiomeric pair of isomers, Delta, SSS, and Lambda, RRR, of the complex ion is observed. The conformation of the three rings forming the upper ''cap'' of the complex structure can be assigned delta or lambda with respect to the 3-fold molecular axis. X-ray data at 300 and 153 K, above and below the critical temperature for the spin transition, show that the conformation of the ligand ''cap'' is the same as the absolute configuration of the complex, with the same Lambda lambda(CAP)(or Delta delta(CAP)) combination prevailing for both the LS ((1)A(1)) and HS (T-5(2)) isomers. Molecular mechanics calculations further show that the ligand energy remains lowest for this Lambda lambda(CAP) (or Delta delta(CAP)) combination at all Fe-N distances over the range spanning the LS and HS isomers. Measurements of the spin crossover relaxation time have been carried out in solution over the temperature range 293-170 K. The observed monophasic relaxation traces are also consistent with the absolute configuration of the complex remaining unaltered during the spin crossover.
Resumo:
Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C-1-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the gamma-phosphorus of ATP.
Resumo:
To understand pitting corrosion in stainless steel is very important, and a recent work showed that the MnS dissolution catalyzed by MnCr2O4{111} is a starting point of pit g. This demonstrates the need to understand the oxygen reduction reaction (ORR) on MnCr2O4{111}, which is the other half-reaction to complete pitting corrosion. In this study, the adsorption behaviors of all oxygen-containing species on MnCr2O4{111}, which has several possible terminations, are explored via density functional theory calculations. It is found that O-2 adsorbs on MnCr2O4{111) surfaces very strongly. Many possible reactions are investigated and the favored reaction mechanism of ORR is determined. The interactions between O-2 and H2O on the two metal-terminated MriCr(2)O(4){111} are found to be different according to the atomic configurations of the two surfaces. All the calculated results suggest that ORR can readily occur on the MnCr2O4{111} surfaces.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.