894 resultados para Machine translation system
Resumo:
The volume of Audiovisual Translation (AVT) is increasing to meet the rising demand for data that needs to be accessible around the world. Machine Translation (MT) is one of the most innovative technologies to be deployed in the field of translation, but it is still too early to predict how it can support the creativity and productivity of professional translators in the future. Currently, MT is more widely used in (non-AV) text translation than in AVT. In this article, we discuss MT technology and demonstrate why its use in AVT scenarios is particularly challenging. We also present some potentially useful methods and tools for measuring MT quality that have been developed primarily for text translation. The ultimate objective is to bridge the gap between the tech-savvy AVT community, on the one hand, and researchers and developers in the field of high-quality MT, on the other.
Resumo:
Les systèmes de traduction statistique à base de segments traduisent les phrases un segment à la fois, en plusieurs étapes. À chaque étape, ces systèmes ne considèrent que très peu d’informations pour choisir la traduction d’un segment. Les scores du dictionnaire de segments bilingues sont calculés sans égard aux contextes dans lesquels ils sont utilisés et les modèles de langue ne considèrent que les quelques mots entourant le segment traduit.Dans cette thèse, nous proposons un nouveau modèle considérant la phrase en entier lors de la sélection de chaque mot cible. Notre modèle d’intégration du contexte se différentie des précédents par l’utilisation d’un ppc (perceptron à plusieurs couches). Une propriété intéressante des ppc est leur couche cachée, qui propose une représentation alternative à celle offerte par les mots pour encoder les phrases à traduire. Une évaluation superficielle de cette représentation alter- native nous a montré qu’elle est capable de regrouper certaines phrases sources similaires même si elles étaient formulées différemment. Nous avons d’abord comparé avantageusement les prédictions de nos ppc à celles d’ibm1, un modèle couramment utilisé en traduction. Nous avons ensuite intégré nos ppc à notre système de traduction statistique de l’anglais vers le français. Nos ppc ont amélioré les traductions de notre système de base et d’un deuxième système de référence auquel était intégré IBM1.
Resumo:
Afin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires d’articles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.
Resumo:
Users seeking information may not find relevant information pertaining to their information need in a specific language. But information may be available in a language different from their own, but users may not know that language. Thus users may experience difficulty in accessing the information present in different languages. Since the retrieval process depends on the translation of the user query, there are many issues in getting the right translation of the user query. For a pair of languages chosen by a user, resources, like incomplete dictionary, inaccurate machine translation system may exist. These resources may be insufficient to map the query terms in one language to its equivalent terms in another language. Also for a given query, there might exist multiple correct translations. The underlying corpus evidence may suggest a clue to select a probable set of translations that could eventually perform a better information retrieval. In this paper, we present a cross language information retrieval approach to effectively retrieve information present in a language other than the language of the user query using the corpus driven query suggestion approach. The idea is to utilize the corpus based evidence of one language to improve the retrieval and re-ranking of news documents in the other language. We use FIRE corpora - Tamil and English news collections in our experiments and illustrate the effectiveness of the proposed cross language information retrieval approach.
Resumo:
This paper describes the UPM system for translation task at the EMNLP 2011 workshop on statistical machine translation (http://www.statmt.org/wmt11/), and it has been used for both directions: Spanish-English and English-Spanish. This system is based on Moses with two new modules for pre and post processing the sentences. The main contribution is the method proposed (based on the similarity with the source language test set) for selecting the sentences for training the models and adjusting the weights. With system, we have obtained a 23.2 BLEU for Spanish-English and 21.7 BLEU for EnglishSpanish
Resumo:
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.
Resumo:
This paper describes the development of the CU-HTK Mandarin Speech-To-Text (STT) system and assesses its performance as part of a transcription-translation pipeline which converts broadcast Mandarin audio into English text. Recent improvements to the STT system are described and these give Character Error Rate (CER) gains of 14.3% absolute for a Broadcast Conversation (BC) task and 5.1% absolute for a Broadcast News (BN) task. The output of these STT systems is then post-processed, so that it consists of sentence-like segments, and translated into English text using a Statistical Machine Translation (SMT) system. The performance of the transcription-translation pipeline is evaluated using the Translation Edit Rate (TER) and BLEU metrics. It is shown that improving both the STT system and the post-STT segmentations can lower the TER scores by up to 5.3% absolute and increase the BLEU scores by up to 2.7% absolute. © 2007 IEEE.
Resumo:
Dissertação de mest., Natural Language Processing & Human Language Technology, Faculdade de Ciências Humanas e Sociais, Univ. do Algarve, 2011
Resumo:
This work is aimed at building an adaptable frame-based system for processing Dravidian languages. There are about 17 languages in this family and they are spoken by the people of South India.Karaka relations are one of the most important features of Indian languages. They are the semabtuco-syntactic relations between verbs and other related constituents in a sentence. The karaka relations and surface case endings are analyzed for meaning extraction. This approach is comparable with the borad class of case based grammars.The efficiency of this approach is put into test in two applications. One is machine translation and the other is a natural language interface (NLI) for information retrieval from databases. The system mainly consists of a morphological analyzer, local word grouper, a parser for the source language and a sentence generator for the target language. This work make contributios like, it gives an elegant account of the relation between vibhakthi and karaka roles in Dravidian languages. This mapping is elegant and compact. The same basic thing also explains simple and complex sentence in these languages. This suggests that the solution is not just ad hoc but has a deeper underlying unity. This methodology could be extended to other free word order languages. Since the frame designed for meaning representation is general, they are adaptable to other languages coming in this group and to other applications.
Resumo:
In this paper we describe the methodology and the structural design of a system that translates English into Malayalam using statistical models. A monolingual Malayalam corpus and a bilingual English/Malayalam corpus are the main resource in building this Statistical Machine Translator. Training strategy adopted has been enhanced by PoS tagging which helps to get rid of the insignificant alignments. Moreover, incorporating units like suffix separator and the stop word eliminator has proven to be effective in bringing about better training results. In the decoder, order conversion rules are applied to reduce the structural difference between the language pair. The quality of statistical outcome of the decoder is further improved by applying mending rules. Experiments conducted on a sample corpus have generated reasonably good Malayalam translations and the results are verified with F measure, BLEU and WER evaluation metrics
Resumo:
Ontologies and taxonomies are widely used to organize concepts providing the basis for activities such as indexing, and as background knowledge for NLP tasks. As such, translation of these resources would prove useful to adapt these systems to new languages. However, we show that the nature of these resources is significantly different from the "free-text" paradigm used to train most statistical machine translation systems. In particular, we see significant differences in the linguistic nature of these resources and such resources have rich additional semantics. We demonstrate that as a result of these linguistic differences, standard SMT methods, in particular evaluation metrics, can produce poor performance. We then look to the task of leveraging these semantics for translation, which we approach in three ways: by adapting the translation system to the domain of the resource; by examining if semantics can help to predict the syntactic structure used in translation; and by evaluating if we can use existing translated taxonomies to disambiguate translations. We present some early results from these experiments, which shed light on the degree of success we may have with each approach