847 resultados para Machine Translation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suffix separation plays a vital role in improving the quality of training in the Statistical Machine Translation from English into Malayalam. The morphological richness and the agglutinative nature of Malayalam make it necessary to retrieve the root word from its inflected form in the training process. The suffix separation process accomplishes this task by scrutinizing the Malayalam words and by applying sandhi rules. In this paper, various handcrafted rules designed for the suffix separation process in the English Malayalam SMT are presented. A classification of these rules is done based on the Malayalam syllable preceding the suffix in the inflected form of the word (check_letter). The suffixes beginning with the vowel sounds like ആല, ഉെെ, ഇല etc are mainly considered in this process. By examining the check_letter in a word, the suffix separation rules can be directly applied to extract the root words. The quick look up table provided in this paper can be used as a guideline in implementing suffix separation in Malayalam language

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The EP2025 EDS project develops a highly parallel information server that supports established high-value interfaces. We describe the motivation for the project, the architecture of the system, and the design and application of its database and language subsystems. The Elipsys logic programming language, its advanced applications, EDS Lisp, and the Metal machine translation system are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to idiosyncrasies in their syntax, semantics or frequency, Multiword Expressions (MWEs) have received special attention from the NLP community, as the methods and techniques developed for the treatment of simplex words are not necessarily suitable for them. This is certainly the case for the automatic acquisition of MWEs from corpora. A lot of effort has been directed to the task of automatically identifying them, with considerable success. In this paper, we propose an approach for the identification of MWEs in a multilingual context, as a by-product of a word alignment process, that not only deals with the identification of possible MWE candidates, but also associates some multiword expressions with semantics. The results obtained indicate the feasibility and low costs in terms of tools and resources demanded by this approach, which could, for example, facilitate and speed up lexicographic work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Embora os progressos na área de informática sejam bastante significativos e velozes, na tradução automática há muito ainda o que ser feito. Desde meados dos anos 40 já havia um interesse, em especial pelos americanos e ingleses, numa tradução mais rápida e eficiente de documentos russos, porém até hoje o que se vê em termos de tradução automática está aquém daquilo que se possa chamar de uma boa tradução. Para buscar uma tradução automática eficiente os cientistas têm usado como fonte principal meios estatísticos de solução para tal problema. Esse trabalho visa dar um novo enfoque a tal questão, buscando na ciência cognitiva sua principal fonte de inspiração. O resultado a que se chega com o presente trabalho é que a estatística deve continuar sendo sim uma fonte de auxílio em especial na definição de padrões. Porém, o trabalho trás consigo o propósito de levantar a sobreposição semântica como via de possível solução que possa vir auxiliar, ou, até mesmo trazer maior rapidez a questão da tradução automática. No campo organizacional levanta uma questão interessante, o valor da experiência como meio inteligente de buscar melhores resultados para as empresas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deaf people have serious difficulties to access information. The support for sign languages is rarely addressed in Information and Communication Technologies (ICT). Furthermore, in scientific literature, there is a lack of works related to machine translation for sign languages in real-time and open-domain scenarios, such as TV. To minimize these problems, in this work, we propose a solution for automatic generation of Brazilian Sign Language (LIBRAS) video tracks into captioned digital multimedia contents. These tracks are generated from a real-time machine translation strategy, which performs the translation from a Brazilian Portuguese subtitle stream (e.g., a movie subtitle or a closed caption stream). Furthermore, the proposed solution is open-domain and has a set of mechanisms that exploit human computation to generate and maintain their linguistic constructions. Some implementations of the proposed solution were developed for digital TV, Web and Digital Cinema platforms, and a set of experiments with deaf users was developed to evaluate the main aspects of the solution. The results showed that the proposed solution is efficient and able to generate and embed LIBRAS tracks in real-time scenarios and is a practical and feasible alternative to reduce barriers of deaf to access information, especially when human interpreters are not available

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A etiquetagem morfossintática é uma tarefa básica requerida por muitas aplicações de processamento de linguagem natural, tais como análise gramatical e tradução automática, e por aplicações de processamento de fala, por exemplo, síntese de fala. Essa tarefa consiste em etiquetar palavras em uma sentença com as suas categorias gramaticais. Apesar dessas aplicações requererem etiquetadores que demandem maior precisão, os etiquetadores do estado da arte ainda alcançam acurácia de 96 a 97%. Nesta tese, são investigados recursos de corpus e de software para o desenvolvimento de um etiquetador com acurácia superior à do estado da arte para o português brasileiro. Centrada em uma solução híbrida que combina etiquetagem probabilística com etiquetagem baseada em regras, a proposta de tese se concentra em um estudo exploratório sobre o método de etiquetagem, o tamanho, a qualidade, o conjunto de etiquetas e o gênero dos corpora de treinamento e teste, além de avaliar a desambiguização de palavras novas ou desconhecidas presentes nos textos a serem etiquetados. Quatro corpora foram usados nos experimentos: CETENFolha, Bosque CF 7.4, Mac-Morpho e Selva Científica. O modelo de etiquetagem proposto partiu do uso do método de aprendizado baseado em transformação(TBL) ao qual foram adicionadas três estratégias, combinadas em uma arquitetura que integra as saídas (textos etiquetados) de duas ferramentas de uso livre, o TreeTagger e o -TBL, com os módulos adicionados ao modelo. No modelo de etiquetador treinado com o corpus Mac-Morpho, de gênero jornalístico, foram obtidas taxas de acurácia de 98,05% na etiquetagem de textos do Mac-Morpho e 98,27% em textos do Bosque CF 7.4, ambos de gênero jornalístico. Avaliou-se também o desempenho do modelo de etiquetador híbrido proposto na etiquetagem de textos do corpus Selva Científica, de gênero científico. Foram identificadas necessidades de ajustes no etiquetador e nos corpora e, como resultado, foram alcançadas taxas de acurácia de 98,07% no Selva Científica, 98,06% no conjunto de teste do Mac-Morpho e 98,30% em textos do Bosque CF 7.4. Esses resultados são significativos, pois as taxas de acurácia alcançadas são superiores às do estado da arte, validando o modelo proposto em busca de um etiquetador morfossintático mais confiável.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Machine translation systems have been increasingly used for translation of large volumes of specialized texts. The efficiency of these systems depends directly on the implementation of strategies for controlling lexical use of source texts as a way to guarantee machine performance and, ultimately, human revision and post-edition work. This paper presents a brief history of application of machine translation, introduces the concept of lexicon and ambiguity and focuses on some of the lexical control strategies presently used, discussing their possible implications for the production and reading of specialized texts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyzes how machine translation has changed the way translation is conceived and practiced in the information age. From a brief review of the early designs of machine translation programs, I discuss the changes implemented in the past decades in these systems to combine mechanical processing and the accessory work by the translator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classification of texts has become a major endeavor with so much electronic material available, for it is an essential task in several applications, including search engines and information retrieval. There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the task. For instance, in topic extraction similar texts mean those within the same semantic field, whereas in author recognition stylistic features should be considered. In this study, we introduce ways to classify texts employing concepts of complex networks, which may be able to capture syntactic, semantic and even pragmatic features. The interplay between various metrics of the complex networks is analyzed with three applications, namely identification of machine translation (MT) systems, evaluation of quality of machine translated texts and authorship recognition. We shall show that topological features of the networks representing texts can enhance the ability to identify MT systems in particular cases. For evaluating the quality of MT texts, on the other hand, high correlation was obtained with methods capable of capturing the semantics. This was expected because the golden standards used are themselves based on word co-occurrence. Notwithstanding, the Katz similarity, which involves semantic and structure in the comparison of texts, achieved the highest correlation with the NIST measurement, indicating that in some cases the combination of both approaches can improve the ability to quantify quality in MT. In authorship recognition, again the topological features were relevant in some contexts, though for the books and authors analyzed good results were obtained with semantic features as well. Because hybrid approaches encompassing semantic and topological features have not been extensively used, we believe that the methodology proposed here may be useful to enhance text classification considerably, as it combines well-established strategies. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The realization that statistical physics methods can be applied to analyze written texts represented as complex networks has led to several developments in natural language processing, including automatic summarization and evaluation of machine translation. Most importantly, so far only a few metrics of complex networks have been used and therefore there is ample opportunity to enhance the statistics-based methods as new measures of network topology and dynamics are created. In this paper, we employ for the first time the metrics betweenness, vulnerability and diversity to analyze written texts in Brazilian Portuguese. Using strategies based on diversity metrics, a better performance in automatic summarization is achieved in comparison to previous work employing complex networks. With an optimized method the Rouge score (an automatic evaluation method used in summarization) was 0.5089, which is the best value ever achieved for an extractive summarizer with statistical methods based on complex networks for Brazilian Portuguese. Furthermore, the diversity metric can detect keywords with high precision, which is why we believe it is suitable to produce good summaries. It is also shown that incorporating linguistic knowledge through a syntactic parser does enhance the performance of the automatic summarizers, as expected, but the increase in the Rouge score is only minor. These results reinforce the suitability of complex network methods for improving automatic summarizers in particular, and treating text in general. (C) 2011 Elsevier B.V. All rights reserved.