919 resultados para MULTI-ELEMENT ANALYSIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A numerical scheme based on the Finite Element Method (FEM) is presented to calculate the full solution of a three-dimensional steady magnetohydrodynamic (MHD) flow with moderately high Hartmann numbers and interaction parameters. An incompressible, viscous and electrically conducting liquid-metal is considered. Assuming a low magnetic Reynolds number, the solution method solves the coupled Navier-Stokes and Maxwell's equations through the use of a penalty function method. Results are presented for Hartmann numbers in the range 10(2)-10(3).
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price. © 2007 American Institute of Physics.
Resumo:
Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.
Resumo:
Objectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAǴs length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion. © 2011 Nova Science Publishers, Inc.
Resumo:
Objectives: Based on a maxillary premolar restored with laminate veneer and using the 3-D finite element analysis (FEA) and mCT data, the aim of this study was to evaluate the influence of different types of buccal cusp reduction on the stress distribution in the porcelain laminate veneer and in the resin luting cement layer. Methods: Two 3-D FEA models (M) of a maxillary premolar were built from mCT data. The buccal cusp reduction followed two configurations: Mt-buccal cusp completely covered by porcelain laminate veneer; and Mp-buccal cusp partially covered by porcelain laminate veneer. The loading (150 N in 458) was performed on the top of the buccal cusp. The finite element software (Ansys Workbench 10.0) was used to obtain the maximum shear stress (σmax) and maximum principal stress (σmax). Results: The Mp showed reduced the stress (σmax) in porcelain laminate veneer (from-2.3 to 24.5 MPa) in comparison with Mt (from-5.3 to 27.4 MPa). The difference between the peak and lower stress values of σmax in Mp (-6.8 to 26.7 MPa) and Mt (-5.3 to 27.4 MPa) was similar for the resin luting cement layer. The structures not exceeded the ultimate tensile strength or the shear bond strength. Conclusions: Cusp reduction did not affect significant increase in σmax and τmax. The Mt showed better stress distribution (τmax) than Mp. © 2011 Published by Elsevier Ireland on behalf of Japan Prosthodontic Society.