167 resultados para METAMATERIALS
Resumo:
This work presents the development and investigation of a new type of concrete for the attenuation of waves induced by dynamic excitation. Recent progress in the field of metamaterials science has led to a range of novel composites which display unusual properties when interacting with electromagnetic, acoustic, and elastic waves. A new structural metamaterial with enhanced properties for dynamic loading applications is presented, which is named metaconcrete. In this new composite material the standard stone and gravel aggregates of regular concrete are replaced with spherical engineered inclusions. Each metaconcrete aggregate has a layered structure, consisting of a heavy core and a thin compliant outer coating. This structure allows for resonance at or near the eigenfrequencies of the inclusions, and the aggregates can be tuned so that resonant oscillations will be activated by particular frequencies of an applied dynamic loading. The activation of resonance within the aggregates causes the overall system to exhibit negative effective mass, which leads to attenuation of the applied wave motion. To investigate the behavior of metaconcrete slabs under a variety of different loading conditions a finite element slab model containing a periodic array of aggregates is utilized. The frequency dependent nature of metaconcrete is investigated by considering the transmission of wave energy through a slab, which indicates the presence of large attenuation bands near the resonant frequencies of the aggregates. Applying a blast wave loading to both an elastic slab and a slab model that incorporates the fracture characteristics of the mortar matrix reveals that a significant portion of the supplied energy can be absorbed by aggregates which are activated by the chosen blast wave profile. The transfer of energy from the mortar matrix to the metaconcrete aggregates leads to a significant reduction in the maximum longitudinal stress, greatly improving the ability of the material to resist damage induced by a propagating shock wave. The various analyses presented in this work provide the theoretical and numerical background necessary for the informed design and development of metaconcrete aggregates for dynamic loading applications, such as blast shielding, impact protection, and seismic mitigation.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.
Resumo:
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Resumo:
This document presents the modeling and characterization of novel optical devices based on periodic arrays of multiwalled carbon nanotubes. Vertically aligned carbon nanotubes can be grown in the arrangement of two-dimensional arrays of precisely determined dimensions. Having their dimensions comparable to the wavelength of light makes carbon nanotubes good candidates for utilization in nano-scale optical devices. We report that highly dense periodic arrays of multiwalled carbon nanotubes can be utilized as sub-wavelength structures for establishing advanced optical materials, such as metamaterials and photonic crystals. We demonstrate that when carbon nanotubes are grown close together at spacing of the order of few hundred nanometers, they display artificial optical properties towards the incident light, acting as metamaterials. By utilizing these properties we have established micro-scaled plasmonic high pass filter which operates in the optical domain. Highly dense arrays of multiwalled also offer a periodic dielectric constant to the incident light and display interesting photonic band gaps, which are frequency domains within which on wave propagation can take place. We have utilized these band gaps displayed by a periodic nanotube array, having 400 nm spacing, to construct photonic crystals based optical waveguides and switches. © 2011 IEEE.
Resumo:
We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum. © 2012 American Institute of Physics.
Resumo:
We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum.
Resumo:
National Natural Science Foundation of China 60677045 60876049
Resumo:
zhangdi于2010-03-09批量导入
Resumo:
The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.
Resumo:
The magnetic-type plasmon resonant of a metal-dielectric-metal nanocavity working at the wavelength of 1.55 mu m is explored, in which the upper layer is periodically patterned with metallic nanostrip arrays. In the dielectric film layer, the magnetic energy intensity is enhanced about 1700 times when irradiated with a p-polarized plane wave. We numerically studied the dispersion of the modes and the Q-value of this periodic cavity arrays. Q value is estimated about 18 and still has room for further improvement. It provides a new type of nanocavity that exhibits a strong magnetic response.
Resumo:
The mode characteristis of a microcylinders with center layer thickness 0.2 mu m and radius 1 mu m are investigated by the three-dimensional (31)) finite-difference time-domain (FDTD) technique and the Pade approximation. The mode quality factor (Q-factor) of the EH71 mode obtained by 3D FDTD increase with the increase of the refractive index of the cladding layer n(2) as n(2) smaller than 3.17, and can be as large as 2.4 x 10(4) as the vertical refractive index distribution is 3.17/3.4/3.17, which is much larger than that of the HE71 mode with the same vertical refractive index distribution.
Resumo:
Growth mechanism of InGaAlAs waveguides by narrow stripe selective MOVPE has been studied. Both the InGaAlAs bulk waveguides and the InGaAlAs MQW waveguides were successful grown on the patterned substrates at optimized growth conditions. The mask stripe width varied from 0 to 40 mu m, while the window region width between a pair of mask stripes was fixed 2.5 mu m. These selectively grown waveguides were covered by specific InP layers, which can keep the InGaAlAs waveguides from being oxidized during the fabrication of devices. In particular, there exhibit strong dependences of the photoluminescence (PL) spectrum on the mask stripe width for the samples. The results were explained in considering both the migration effect from a masked region (MMR) and the lateral vapor diffusion effect (LVD).
Resumo:
Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.