992 resultados para MELTING BEHAVIOR
Resumo:
The isothermal crystallization behavior of poly(L-lactic acid)/organo-montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice-functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (t(i)) and half times for overall PLLA crystallization (100 degrees C <= T-c <= 120 degrees C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X-ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer.
Resumo:
Enhancing the stability of plasticized poly(L-lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under I-ray (Co-60) in the presence of triallyl isocyanurate (TALC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TALC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking.
Resumo:
The morphological development and crystallization behavior of poly(epsilon-caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass-transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49 degrees C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory-Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be -3.95 J/cm(3).
Resumo:
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three-dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen-Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant K, than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, sigma(e) = 101.7-58.0 x 10(-3) J/m(2), and work of chain folding, q = 5.79-3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory-Huggins interaction parameters were obtained.
Resumo:
Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.
Resumo:
The nanocomposites of polyamide1010 (PA1010) filled with carbon nanotubes (CNTs) were prepared by melt mixing techniques. The isothermal melt-crystallization kinetics and nonisothermal crystallization behavior of CNTs/PA1010 nanocomposites were investigated by differential scanning calorimetry. The peak temperature, melting point, half-time of crystallization, enthalpy of crystallization, etc. were measured. Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The isothermal crystallization was also described according to Avrami's approach. It has been shown that the addition of CNTs causes a remarkable increase in the overall crystallization rate of PA1010 and affects the mechanism of nucleation and growth of PA1010 crystals. The analysis of kinetic data according to nucleation theories shows that the increment in crystallization rate of CNTs/PA1010 composites results from the decrease in lateral surface free energy.
Resumo:
The crystallization behavior of neat PPS and PPS in blends with PMR-POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface.
Resumo:
The non-isothermal crystallization behavior and kinetics of metallocene short chain branched polyethylene were investigated via DSC at cooling rates from 2.5 to 20 degreesC/min, and subsequent heating at rate of 10 degreesC/min. To verify the effect of molecular weight and branching content on crystallization, three group samples were chosen: (1) linear polyethylene with low molecular weight and high molecular weight; (2) low molecular weight polyethylene with low branching content and high branching content; (3) high molecular weight polyethylene with low branching content and high branching content. The results show that crystallization temperature, crystallinity, melting temperature and crystallization rate are highly branching content-dependent. Molecular weight effect is less important, compared to branching content. A dramatic decrease of crystallization temperature, crystallinity, crystallization rate and melting temperature was observed for branched samples. The non-isothermal kinetics was analyzed via the methods, developed by Gupta and Mo Zhi-shen, and good agreement was obtained.
Resumo:
poly(epsilon-caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by sol-gel approach and the crystalline behavior of PCL in the silica networks has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The degree of PCL crystallinity in the PCL/SiO2 hybrid networks reduces with the increase of SiO2 content. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid materials. The melting points of PCL in the networks are lower than that of pure PCL,but they almost have a same value. WAXD results show that when the PCL weight percentage is higher than 40wt% in the hybrid samples,part of PCL can crysatllize and the PCL crystallites are almost in a same size. That means the crystalline movement of PCL molecular chains is strictly confined by the porous gel. The crystalline PCL in the hybrid samples is relatively free from the composition of the materials, because the crystallization temperature and melting point of PCL of the samples are almost equal,and the crystalline PCL of different samples has the same crystalline structure and the same crystallite sizes L-110 and L-200, that means the crystalline part of PCL in the hybrid samples is unperturbed and the porous silica gel gives enough space for PCL to crystallize into the same crystalline structure and the same size crystallites.
Resumo:
Nonisothermal and isothermal melt crystallization kinetics of a novel aryl ether ketone polymer containing meta-phenylene linkages, PEKEKK (T/I), were studied by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny and a new approach by combining the Avrami equation with the Ozawa equation could describe the nonisothermal crystallization. Isothermal crystallization could also be described by the Avrami equation. The activation energies were 187 and 159 kJ/mol for nonisothermal and isothermal crystallization, respectively. Using the Hoffman-Weeks method, the equilibrium melting point T-m(o) was estimated as 353 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter K-g of the isothermal melt crystallization was estimated as 5.49 x 10(5) K-2. The crystallization characteristics of PEKEKK (T/I) were compared with those of all-para PEKEKK. The differences were explained by differences in the chain flexibility of the two polymers.
Resumo:
The origins of the single- and double-melting endotherms of isotactic polypropylene crystallized at different temperatures were studied carefully by differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering. The experimental data show that spontaneous crystallization occurs when the crystallization temperature is lower than 117 degrees C; thus the lamellae formed are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae leads to double endotherms. On the other hand, when the crystallization temperature is higher than 136 degrees C, two major kinds of lamellae with different thickness are developed during the isothermal process, which also results in the double-melting endotherms. In the intermediate temperature range the lamellae formed are perfect, and there is only a single peak in the distribution of lamellar thickness. This explains the origin of the single-melting endotherm. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(epsilon-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single T-g, indicating these blends are miscible. The interaction parameter B's were determined to be -14 J cm(-3), -15 J cm(-3) respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.
Resumo:
Poly(ethylene oxide) (PEO) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by sol-gel approach. The crystallization behavior of PEO in silica networks has been investigated by differential scanning calorimeter (DSC) and scanning electron micrograph (SEM). The degree of PEO crystallinity in PEO/SiO2 hybrid networks reduces with the increase of SiO2. PEO is in amorphous state when the concentration of PEO is lower than 50 wt% in the hybrid materials. The melting points of PEO in the networks are lower than that of pure PEG, but the melting point of PEO in the networks almost has the same melting point. WAXD and SEM results show that the crystalline behavior of PEO in PEO/SiO2 hybrid system is sternly confined. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Poly (ethylene oxide) (PEO) and poly (trimethopropane trimethacrylate) (PTMPTMA) interpenetrate networks have been synthesized. The confined crystallization behavior of PEO in the PTMTYTMA networks has been investigated by a differential scanning calorimeter and scanning electron microscope. The degree of PEO crystallinity in PEO/PTMPTMA interpenetrate networks reduces with the increase of PTMPTMA. PEO is in an amorphous state when the concentration of PEO is lower than 50% in the interpenetrate networks system. The melting points of crystalline PEO in the networks are lower than that of pure PEG, and the melting point of PEO in the networks is higher and increases with the increase of PEO in the interpenetrate networks. Wide-angle X-ray diffraction results show that the PEO crystallite size perpendicular to the (120) plane is not affected as much as PEO in silica networks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Poly(epsilon -caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by the sol-gel method. The crystallization behavior of PCL in silica networks has been investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The degree of PCL crystallinity in PCL/SiO2 hybrid networks reduces with increase of SiO2. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid system. The melting point of PCL in the networks is lower than, but close to that of pure PCL. WAXD and SEM results show that the crystalline behavior of PCL in PCL/SiO2 hybrid system is strictly confined. (C) 2001 Elsevier Science Ltd. All rights reserved.