922 resultados para MELON FRUIT
Resumo:
Studies of ant-plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Banana fruits are important foods, but there have been very few studies evaluating the phenolics associated with their cell walls. In the present study, (+) catechin, gallocatechin, and (-) epicatechin, as well as condensed tannins, were detected in the soluble extract of the fruit pulp; neither soluble anthocyanidins nor anthocyanins were present. In the soluble cell wall fraction, two hydroxycinnamic acid derivatives were predominant, whereas in the insoluble cell wall fraction, the anthocyanidin delphinidin, which is reported in banana cell walls for the first time, was predominant. Cell wall fractions showed remarkable antioxidant capacity, especially after acid and enzymatic hydrolysis, which was correlated with the total phenolic content released after the hydrolysis of the water-insoluble polymer, but not for the posthydrolysis water-soluble polymer. The acid hydrolysis released various monosaccharides, whereas enzymatic hydrolysis released one peak of oligosaccharides. These results indicate that banana cell walls could be a suitable source of natural antioxidants and that they could be bioaccessible in the human gut.
Resumo:
Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silica analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.
Resumo:
BACKGROUND: Fruit softening is generally attributed to cell wall degradation in the majority of fruits. However, unripe bananas contain a large amount of starch, and different banana cultivars vary in the amount of starch remaining in ripe fruits. Since studies on changes in pulp firmness carried outwith bananas are usually inconclusive, the cell wall carbohydrates and the levels of starch and soluble cell wall monosaccharides from the pulps of three banana cultivars were analysed at different ripening stages. RESULTS: Softening of Nanicao and Mysore bananas seemed to be more closely related to starch levels than to cell wall changes. For the plantain Terra, cell wall polysaccharide solubilisation and starch degradation appeared to be the main contributors. CONCLUSION: Banana softening is a consequence of starch degradation and the accumulation of soluble sugars in a cultivar-dependent manner. However, contributions from cell wall-related changes cannot be disregarded. (C) 2011 Society of Chemical Industry
Resumo:
The aim of the present study was to evaluate the antimicrobial and cytotoxic activity of the ethanolic extract of S. cumini according to the Clinical and Laboratory Standards Institute reference method (with modifications), determining the minimal inhibitory and lethal concentration. Activity against Gram-positive (Staphylococcus aureus and S. epidermidis), Gram-negative (Pseudomonas aeruginosa) and yeast of Candida sp and Cryptococcus neoformans was evaluated. The effects of the fruit extract were examined in hamster cells ovaries in concentrations ranging from 1250.0 a 4.9 mu g/ml, measuring the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium. The extract showed both bactericidal and fungicidal activity among the various microorganisms tested and the MIC ranging from 7.8 to 250 mu g/ml. The MIC, MBC and MFC should values that were similar for all the microorganisms. Cytotoxicity index of the dried extract corresponded to the concentration of 400 mu g/ml. The extract could potentially be used in topical antimicrobial products. Thus, the activity of extract was potent to bacteria and mainly to non-albicans species and C. neoformans.
Resumo:
The relative oviposition rate of the parasitoid Fopius arisanus (Sonan) was investigated across three frugivorous tephritid species, Bactrocera tryoni Froggart, Bactrocera jarvisi (Tryon) and Bactrocera cucumis French. Choice and no-choice tests were both used. The suitability of these three species for sustaining larval development and survival to the adult stage was also assessed. Fopius arisanus parasitized all three tephritid species. regardless of the method of exposure, but showed stronger preference for B. tryoni and B. jarvisi over B. cucumis. Superparasitism was extremely rare. Successful development of F. arisanus varied across host species. Bactrocera tryoni yielded significantly more parasitoids than B. jarvisi, but no wasps emerged from B. cucumis puparia. Tests were set up in replicated trials. but results were not homogeneous across trials. We discuss the host relationships of F. arisanus with reference to this variation and in relation to host suitability for larval development.
Resumo:
The electroantennogram method was used to investigate the number of distinct olfactory receptor neuron types responding to a range of behaviorally active volatile chemicals in gravid Queensland fruit flies, Bactrocera tryoni. Three receptor neuron types were identified. One type responds to methyl butyrate, 2-butanone, farnesene, and carbon dioxide; a second to ethanol; and a third to n-butyric acid and ammonia. The receptor neuron type responding to methyl butyrate, 2-butanone, farnesene, and carbon dioxide consists of three subtypes. The presence of a limited number of receptor neuron types responding to a diverse set of chemicals and the reception of carbon dioxide by a receptor neuron type that responds to other odorants are novel aspects of the peripheral olfactory discrimination process.
Resumo:
Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.
Resumo:
The potential for the ethylene binding inhibitor, 1-methylcyclopropene, to delay ripening of 'Hass' avocado, 'African Pride' custard apple, 'Kensington Pride' mango and 'Solo' papaya was examined. Fruit were gassed with 25 muL/L 1-methylcyclopropene for 14 h at 20 degreesC, followed by treatment with 100 muL/L ethylene for 24 h, and then ripened at 20 degreesC. Ethylene treatment alone generally halved the number of days for fruit to reach the ripe stage, compared with untreated fruit. 1-Methylcyclopropene treatment alone increased the number of days to ripening by 4.4 days (40% increase), 3.4 days (58%), 5.1 days (37%) and 15.6 days (325%) for avocado, custard apple, mango and papaya, respectively, compared with untreated fruit. Applying 1-methylcyclopropene to the fruit before ethylene prevented the accelerated ripening normally associated with ethylene treatment, so that the number of days to ripening for fruit treated with 1-methylcyclopropene plus ethylene was similar to the number of days to ripening for fruit treated with 1-methylcyclopropene alone. 1-Methylcyclopropene treatment was associated with slightly higher severity of external blemishes in papaya and custard apple, slightly higher rots severity in avocado, custard apple and papaya, and at least double the severity of stem rots in mango, relative to fruit not treated with 1-methylcyclopropene. Thus, 1-methylcyclopropene treatment has the potential to reduce the risk of premature ripening of avocado, custard apple, mango and papaya fruit due to accidental exposure to ethylene. However, additional precautions may be necessary to reduce disease severity associated with 1-methylcyclopropene treatment.
Resumo:
This study investigated treatment of mango (Mangifera indica L.) fruit with 2 host defence-promoting compounds for suppression of anthracnose disease (Colletotrichum gloeosporioides). Cultivar 'Kensington Pride' fruit were treated at concentrations of up to 1000 mg/L with either potassium phosphonate or salicylic acid. Applications were by various combinations of pre- and postharvest dips and vacuum infiltration. Postharvest treatments at up to 2000 mg/L salicylic acid were evaluated in a second fruiting season. Fruit were either uninoculated or inoculated with the fungal pathogen. Colour, firmness and disease-severity were assessed during shelf life at 23 degreesC. There were no significant (P>0.05) effects of potassium phosphonate or salicylic acid on anthracnose disease severity in the first season. Moreover, phosphonate or salicylic acid treatment did not significantly affect fruit colour or firmness changes. There were significant (P
Resumo:
Persoonia virgata R. Br. is harvested from the wild in both its vegetative and flowering stages. There has been no systematic study published on the annual growth cycle and anecdotal reports are conflicting. The growth pattern, flowering and fruit development of P. virgata in its natural habitat was recorded monthly for two consecutive years. The main growth period occurred in late spring-mid-autumn (November-May) when the shrubs were producing little or no fruit. Very few open flowers were observed at the site over the 2 years, with only 6.7 and 12.7% of stems bearing open flowers in January and February 1996, respectively. A second study of flowering on container-grown shrubs showed that individual flowers were open for only 2-5 days, with individual stems taking 3-8.5 weeks to complete flowering. The main fruit growth period occurred from May to September, and in June and July 1996 the total fruit set per stem was 41.6 and 36.1%, respectively. The fruit took at least 6 months to develop during which vegetative growth was minimal. The harvesting of plants in the flowering or fruiting stages removes the annual seed crop, which may reduce regeneration of this obligate seed regenerator and threaten its survival after fire.