940 resultados para Litter breakdown


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shallow-trench isolation drain extended pMOS (STI-DePMOS) devices show a distinct two-stage breakdown. The impact of p-well and deep-n-well doping profile on breakdown characteristics is investigated based on TCAD simulations. Design guidelines for p-well and deep-n-well doping profile are developed to shift the onset of the first-stage breakdown to a higher drain voltage and to avoid vertical punch-through leading to early breakdown. An optimal ratio between the OFF-state breakdown voltage and the ON-state resistance could be obtained. Furthermore, the impact of p-well/deep-n-well doping profile on the figure of merits of analog and digital performance is studied. This paper aids in the design of STI drain extended MOSFET devices for widest safe operating area and optimal mixed-signal performance in advanced system-on-chip input-output process technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow field with vortex breakdown in wide spherical gaps was studied numerically by a finite difference method under the axisymmetric condition. The result shows that the flow bifurcates to periodic motion as the Reynolds number or the eccentricity of the spheres increases. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the time-dependent resistive voltage and power deposition during the breakdown phase of pseudo-spark is presented. The voltage and current were measured by specially designed low-inductance capacitive voltage divider and current measuring resistor. The measured waveforms of voltage and current are digitized and processed by a computer program to remove the inductive component, so as to obtain resistive voltage and power deposition. The influence of pressure, cathode geometry and charging voltage of storage capacitors on the electrical properties in the breakdown phase are investigated. The results suggest that the breakdown phase of pseudo-spark consists of three stages. The first stage is mainly hollow cathode discharge. In the second stage, field-enhanced thermionic emission takes place, resulting in a fast voltage drop and sharp rise of discharge current. The third stage of discharge depends simply on the parameters of the discharge circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We monitored litterfall biomass at six different sites of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forested wetlands in South Florida from July 1997 to June 1999. Annual litterfall of melaleuca varied between sites from 6.5 to 9.9 t dry wt ha(-1) yr(1) over the two-year period. Litterfall was significantly higher (p < 0.0001) in scasonally flooded habitats (9.3 t ha(-1) yr(1)) than in non-flooded (7.5 t ha(-1) yr(1)) and permanently flooded habitats (8.0 t ha(-1) yr(1)). Leaf fall was the major component forming 70% of the total litter, woody material 16%, and reproductive material 11%. Phenology of flowering and leaf flush was investigated by examination of the timing and duration of the fall of different plant parts in the litter traps, coupled with monthly field observations during the two-year study. In both years, flowering began in October and November, with peak flowers production around December, and was essentially completed by February and March. New shoot growth began in mid winter after peak flowering, and extended into the spring. Very little new growth was observed in melaleuca forests during the summer months, from May to August, in South Florida. In contrast, the fall of leaves and small wood was recorded in every month of the year, but generally increased during the dry season with higher levels observed from February to April. Also, no seasonality was recorded in the fall of seed capsules, which apparently resulted from the continual self-thinning of small branches and twigs inside the forest stand. In planning management for perennial weeds, it is important to determine the period during its annual growth cycle when the plant is most susceptible to control measures. These phenological data suggest that the appropriate time for melaleuca control in South Florida might be during late winter and early spring, when the plant is most active.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two important issues in electron beam physical vapor deposition (EBPVD) are addressed. The first issue is a validity condition of the classical cosine law widely used in the engineering context. This requires a breakdown criterion of the free molecular assumption on which the cosine law is established. Using the analytical solution of free molecular effusion flow, the number of collisions (N-c) for a particle moving from an evaporative source to a substrate is estimated that is proven inversely proportional to the local Knudsen number at the evaporation surface. N-c = 1 is adopted as a breakdown criterion of the free molecular assumption, and it is verified by experimental data and DSMC results. The second issue is how to realize the uniform distributions of thickness and component over a large-area thin film. Our analysis shows that at relatively low evaporation rates the goal is easy achieved through arranging the evaporative source positions properly and rotating the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-shot laser damage threshold of MgO for 40-986 fs, 800 nm laser pulses is reported. The pump-probe measurements with femtosecond pulses were carried out to investigate the time-resolved electronic excitation processes. A theoretical model including conduction band electrons (CBE) production and laser energy deposition was applied to discuss the roles of multiphoton ionization (MPI) and avalanche ionization in femtosecond laser-induced dielectric breakdown. The results indicate that avalanche ionization plays the dominant role in the femtosecond laser-induced breakdown in MgO near the damage threshold. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

unavailable<br>H. Sun's e-mail address is shy780327@siom.ac.cn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.