748 resultados para Lithium ion
Resumo:
Nykyajan jatkuvasti kiristyvät päästörajoitukset ja ilmastonmuutoksen uhka ovat ajavia voimia kehittämään voimalaitosten tekniikkaa energiatehokkaampaan ja ympäristöystävällisempään suuntaan. Polttomoottoritekniikan parantaminen on tärkeä osa tätä kehitystä, mutta jo nykyisiä moottoreita voitaisiin ajaa energiate-hokkaammin käyttämällä akustoa ja älykästä säätöjärjestelmää apuna. Työssä tutkitaan simulaatioiden avulla voidaanko ulkomerellä toimivan huolto-aluksen energiatehokkuutta parantaa muokkaamalla sen tehon tuottoa keskitehoes-timaattorin ja akuston avulla.
Resumo:
Litiumioniakkujen kehityksen myötä litiumin tarve ja kysyntä ovat kasvaneet viime vuodet tasaisesti noin 10 % vuosivauhdilla. Kasvun on myös ennustettu jatkuvan samanlaisena tulevaisuudessa, jonka takia erilaiset litiumin erotusprosessit ovat nousseet tutkimuksen kohteeksi. Tärkeimmät litiumlähteet sijaitsevat suola-aavikoilla ja -järvillä, joihin litiumia on kerääntynyt suuria määriä maanpinnan läheisyyteen. Litiumia erotetaan suolatasangoilla aikaa vievissä haihdutus- ja saostusvaiheissa. Suolaliuokset sisältävät litiumin lisäksi muita metalleja, kuten magnesiumia, kalsiumia ja natriumia, joista etenkin magnesium häiritsee litiumin erotusta. Aikaisemmissa tutkimuksissa ei ole löydetty litiumille riittävän selektiivistä ioninvaihtohartsia. Tehdyissä tutkimuksissa muut metallit on usein erotettu selektiivisesti ennen litiumia ja litium on erotettu lopuksi. Litiumin erotusta voitaisiin parantaa, mikäli se onnistuisi selektiivisesti suoraan suolaliuoksesta. Tässä työssä tutkittiin litiumin selektiivistä erotusta magnesium- ja kalsiumpitoisesta väkevästä kloridiliuoksesta ioninvaihtohartseilla sekä molekyyliseulalla. Käytetyt neljä ioninvaihtohartsia olivat kaupallisia Puroliten hartseja: MN200, S940, CT151 ja A170. Molekyyliseula oli Sigman huokoskoon 4 Å zeoliittia. Kromatografisilla kolonnikokeilla saadut näytteet analysoitiin ICP-AES:lla. Tulosten perusteella ei yksikään tutkituista hartseista ja molekyyliseulasta ollut selektiivinen litiumille.
Resumo:
Tässä kandidaatintyössä tutkittiin sähkö- ja hybridiajoneuvojen akkujen uusiokäyttöä. Tutkimus toteutettiin kirjallisuustyönä. Tavoitteena oli selvittää voidaanko sähkö- ja hybridiajoneuvojen akkuja uusiokäyttää, mitä ongelmia mahdollisesti uusiokäyttöön liittyy, minkälaisissa sovelluksissa käytettyjä akkuja voisi käyttää ja uusiokäytetäänkö kyseisenlaisia akkuja jo nykyään. Työssä esiteltiin myös yleisimpiä akkutekniikoita sekä niiden kierrätystä. Tutkimuksessa havaittiin, että akuissa on runsaasti kapasiteettia jäljellä ajoneuvokäytön jälkeen. Uusiokäytössä akku voi kestää jopa yhtä paljon käyttöä kuin ajoneuvokäytössä. Ongelmat uusiokäytössä liittyvät akkujen vaihtelevaan kuntoon ja kapasiteettiin. Ennen uusiokäyttöä akut tulisi tarkastaa ja jos mahdollista, poistaa huonokuntoiset ja vialliset kennot. Käytettyjen akkujen uusiokäyttöön soveltuvista laitteistoista on tehty muutamia prototyyppejä, jotka ovat teholtaan ja kapasiteetiltaan hyvin vaihtelevia. Sopivalla valvontajärjestelmällä varustettuna käytettyjä akkuja voitaneen käyttää myös olemassa olevissa, akkuja sisältävissä järjestelmissä. Käytettyjä akkuja voitaneen käyttää muun muassa uusiutuvan energian varastointiin, sähköverkon kulutushuippujen kompensointiin ja sähköajoneuvojen pikalatauksen puskurina. Etenkin litiumioniakkujen uusiokäyttö on järkevää, koska kierrätys ei ole kovin tehokasta ainakaan vielä.
Resumo:
Tämän kandidaatintyön tavoitteena oli tutkia sähköautoissa käytettäviä akkuteknologioita ja verrata niiden ominaisuuksia keskenään sekä sähköautojen asettamien akkuvaatimusten kanssa. Akkuteknologiakartoituksen ja ominaisuusvertailun avulla tutkimuksessa oli tarkoitus selvittää sähköautojen akkujen kehitystä menneestä nykyhetkeen ja luoda katsaus akkuteknologian tulevaisuuteen. Tutkimuksessa painotettiin akkujen suorituskykynäkökulmaa, mutta tutkimuksessa otettiin kantaa myös eri akkuteknologioiden turvallisuuteen, ympäristötekijöihin ja hintaan. Työ toteutettiin kirjallisuustutkimuksena ja lähteinä käytettiin alan kirjallisuutta, IEEE artikkeleita, tutkimusraportteja ja verkkodokumentteja. Lisäksi tutkimuksessa hyödynnettiin akku- ja sähköautovalmistajilta saatavaa tietoa, johon suhtauduttiin varauksin. Tutkimuksessa kävi ilmi, että erilaisia litiumioniakkuteknologioita käytetään tällä hetkellä eniten sekä täyssähköautoissa että pistokehybrideissä. Huomattiin, että akkujen suorituskyvyn kehittyminen on nopeutunut viime vuosina. Erityisesti akkujen energianvarastointikykyyn vaikuttavat ominaisenergiatasot ovat kasvaneet selkeästi. Nykyisen kehittyneen litiumioniakkuteknologian todettiin täyttävän jo osittain lähivuosien suorituskykytavoitteet. Tutkimuksessa tultiin siihen tulokseen, että litiumrikkiakkuteknologia voi korvata litiumioniakkuteknologian ainakin täyssähköautoissa parempien ominaisenergiatasojen ja halvempien valmistuskustannuksien takia. Myös litiumilma-akkuteknologialla havaittiin olevan mahdollisuuksia haastaa muut litiumakkuteknologiat seuraavalla vuosikymmenellä. Tutkimuksen johtopäätöksenä todetaan, että sähköautot voivat kaupallistua laajemmin lähivuosina akkujen suorituskykyominaisuuksien kehittyessä jatkuvasti. Suorituskykyominaisuuksien parantuminen tulee todennäköisesti johtamaan siihen, että täyssähköautot yleistyvät enemmän ja pistokehybridit tulevat jäämään sähköautojen välivaiheeksi. Uusien akkuteknologioiden käyttöönotto kaupallisiin sähköautoihin voi viedä kuitenkin odotettua kauemmin, sillä akut tarvitsevat huolellista testausta ja käyttöönotto edellyttää, että kaikki ominaisuudet ovat vaaditulla tasolla.
Resumo:
Tässä diplomityössä tarkasteltiin Nissan Leaf -sähköauton käytetyn litiumakun soveltuvuutta UPS-varavirtalaitteen energialähteeksi. Kun akku on heikentynyt niin ettei sen kapasiteetti enää ole riittävä autokäyttöön, sitä voidaan kuitenkin vielä hyödyntää muissa sovelluksissa, kuten UPS-laitteessa. Työ sai alkunsa osana GreenDataNet-projektia, jossa pyritään kehittämään datakeskuksiin ympäristöä vähemmän kuormittavia ratkaisuja käyttämällä uusiutuvia energialähteitä, akkujen uusiokäytöllä, sekä energianhallinnan optimoinnilla. Työssä käytiin läpi akun ja sen ohjausjärjestelmän ominaisuuksia, kerrottiin UPS:in ohjelmistoon tehdyistä muutoksista sekä esitettiin testitulokset. Lopputuloksena todettiin akun sopivan muuten hyvin UPS-käyttöön, mutta vaadittu päivittäinen kennojännitteiden tasaus ja sen aiheuttama katkos energian saatavuuteen heikentää UPSin käyttövarmuutta kuorman suojauksessa. Lopussa esitettiin muutamia ehdotuksia tämän ongelman korjaamiseksi.
Resumo:
Työssä tutkittiin kirjallisuustyönä akkuteknologian nykytilaa ja markkinoita kulutuselektroniikan osalta. Työssä tehtiin myös katsaus potentiaalisiin tulevaisuuden akkuteknologioihin. Työssä havaittiin, että kulutuselektroniikassa ainoat suuresti käytetyt akkutyypit ovat nikkelimetallihybridi- (NiMH) ja litiumioniakut (Li-ion). Tärkeimpänä ominaisuutena kulutuselektroniikassa akuilla yleensä pidetään kapasiteettia, jossa Li-ion akut ovat selvästi parempia jopa kaksinkertaisen energiatiheyden takia. Li-ion akuilla voidaan saavuttaa myös moninkertainen käyttöikä lataussykleinä ja moninkertainen purkausvirta, riippuen käytetystä katodimateriaalista. NiMH akuilla etuna on lähinnä halvempi hinta ja parempi turvallisuus. Toisaalta myös pieni jännite voidaan laskea hyväksi puoleksi, koska NiMH akuilla voidaan korvata kertakäyttöisiä alkaliparistoja. Vuonna 2012 Li-ion akkuja myytiin kapasiteetissa mitattuna jopa kahdeksan kertaa enemmän kuin NiMH akkuja ja myyntimäärien ennustetaan myös kasvavan tulevaisuudessa. Liion akkujen myyntimääristä suurin osa oli kulutuselektroniikan käyttökohteisiin ja jopa kaksi kolmasosaa oli kannettavien tietokoneiden ja kännyköiden akkuja. Uusia akkuteknologioita ja Li-ion akkujen parannuksia on paljon kehitteillä, mutta suurimman potentiaalin ja myös suuret ongelmat kaupallistumiseen omaa litium-ilma akut. Lyhyemmällä aikavälillä potentiaalisia teknologioita ovat litium-rikki akut, sekä nykyisiin Li-ion akkuihin kehitteillä olevat anodimateriaalit kuten esim. pii ja alumiini/titaani, joiden ongelmiin on löydetty ratkaisuja nanoteknologiasta.
Resumo:
Le LiFePO4 est un matériau prometteur pour les cathodes des batteries au lithium. Il possède une bonne stabilité à haute température et les précurseurs utilisés pour la synthèse sont peu couteux. Malheureusement, sa faible conductivité nuit aux performances électrochimiques. Le fait de diminuer la taille des particules ou d’enrober les particules d’une couche de carbone permet d’augmenter la conductivité. Nous avons utilisé une nouvelle méthode appelée « synthèse par voie fondue » pour synthétiser le LiFePO4. Cette synthèse donne des gros cristaux et aucune impureté n’est détectée par analyse Rayon-X. En revanche, la synthèse de LiXFePO4 donne un mélange de LiFePO4 pur et d’impureté à base de lithium ou de fer selon l’excès de fer ou de lithium utilisé. La taille des particules de LiFePO4 est réduite à l’aide d’un broyeur planétaire et plusieurs paramètres de broyage sont étudiés. Une couche de carbone est ensuite déposée sur la surface des particules broyées par un traitement thermique sur le LiFePO4 avec du -lactose. L’influence de plusieurs paramètres comme la température du traitement thermique ou la durée du chauffage sont étudiés. Ces expériences sont réalisées avec un appareil d’analyse thermogravimétrique (ATG) qui donne la quantité de chaleur ainsi que la variation de masse durant le chauffage de l’échantillon. Ce nouveau chauffage pour la couche de carbone donne des échantillons dont les performances électrochimiques sont similaires à celles obtenues précédemment avec la méthode de chauffage pour la couche de carbone utilisant le four tubulaire.
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.
Resumo:
The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials.
Resumo:
Esta revisão visa ser uma introdução à aplicação de materiais cerâmicos em dispositivos de armazenamento de energia, em especial baterias secundárias de íons lítio, dispositivos nos quais os materiais cerâmicos, especialmente óxidos, são muito importantes em todas as partes do dispositivo. A revisão está focada nos materiais cerâmicos para catodos e anodos, partes chaves destes dispositivos. Ela tem por principal finalidade ser uma fonte de informação para aqueles que desejem trabalhar com o desenvolvimento de materiais cerâmicos para tais tipos de dispositivos. Aspectos relacionados à nanotecnologia e materiais óxidos nanoestruturados para esta área são discutidos ao final do artigo.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Lithium ion conducting polymer electrolytes based on polyvinyl Alcohol (PVA-OH) complexed with salt Li2SO4 and different weight percent ratios of PEG(400) plasticizer have been prepared by solution cast technique using deionized water as solvent. The thermogravimetric analysis (TGA) showed that the thermal stability of the materials depended on the plasticizer content. The FTIR study confirmed the polymer salt complex formation. The modulus spectra indicated the non-Debye nature of the material; a dominant relaxation process is visible being associated with the dynamic glass transition, relaxation-a. The maximum of each peak is shifted to higher frequencies as the plasticizer increases due to an enhancement of dipolar mobility in the origin of cooperative motions. A power law frequency dependence of the real part of the electrical conductivity is observed, which is characteristic of the effects of ion-ion and/or ion-chain correlations in ion motion. This variation is well fitted to a Jonscher's expression.
Resumo:
Direct methanol fuel cells (DMFCs) without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA) specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL) were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.
Resumo:
The development of safe, high energy and power electrochemical energy-conversion systems can be a response to the worldwide demand for a clean and low-fuel-consuming transport. This thesis work, starting from a basic studies on the ionic liquid (IL) electrolytes and carbon electrodes and concluding with tests on large-size IL-based supercapacitor prototypes demonstrated that the IL-based asymmetric configuration (AEDLCs) is a powerful strategy to develop safe, high-energy supercapacitors that might compete with lithium-ion batteries in power assist-hybrid electric vehicles (HEVs). The increase of specific energy in EDLCs was achieved following three routes: i) the use of hydrophobic ionic liquids (ILs) as electrolytes; ii) the design and preparation of carbon electrode materials of tailored morphology and surface chemistry to feature high capacitance response in IL and iii) the asymmetric double-layer carbon supercapacitor configuration (AEDLC) which consists of assembling the supercapacitor with different carbon loadings at the two electrodes in order to exploit the wide electrochemical stability window (ESW) of IL and to reach high maximum cell voltage (Vmax). Among the various ILs investigated the N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1(2O1)TFSI) was selected because of its hydrophobicity and high thermal stability up to 350 °C together with good conductivity and wide ESW, exploitable in a wide temperature range, below 0°C. For such exceptional properties PYR1(2O1)TFSI was used for the whole study to develop large size IL-based carbon supercapacitor prototype. This work also highlights that the use of ILs determines different chemical-physical properties at the interface electrode/electrolyte with respect to that formed by conventional electrolytes. Indeed, the absence of solvent in ILs makes the properties of the interface not mediated by the solvent and, thus, the dielectric constant and double-layer thickness strictly depend on the chemistry of the IL ions. The study of carbon electrode materials evidences several factors that have to be taken into account for designing performing carbon electrodes in IL. The heat-treatment in inert atmosphere of the activated carbon AC which gave ACT carbon featuring ca. 100 F/g in IL demonstrated the importance of surface chemistry in the capacitive response of the carbons in hydrophobic ILs. The tailored mesoporosity of the xerogel carbons is a key parameter to achieve high capacitance response. The CO2-treated xerogel carbon X3a featured a high specific capacitance of 120 F/g in PYR14TFSI, however, exhibiting high pore volume, an excess of IL is required to fill the pores with respect to that necessary for the charge-discharge process. Further advances were achieved with electrodes based on the disordered template carbon DTC7 with pore size distribution centred at 2.7 nm which featured a notably high specific capacitance of 140 F/g in PYR14TFSI and a moderate pore volume, V>1.5 nm of 0.70 cm3/g. This thesis work demonstrated that by means of the asymmetric configuration (AEDLC) it was possible to reach high cell voltage up to 3.9 V. Indeed, IL-based AEDLCs with the X3a or ACT carbon electrodes exhibited specific energy and power of ca. 30 Wh/kg and 10 kW/kg, respectively. The DTC7 carbon electrodes, featuring a capacitance response higher of 20%-40% than those of X3a and ACT, respectively, enabled the development of a PYR14TFSI-based AEDLC with specific energy and power of 47 Wh/kg and 13 kW/kg at 60°C with Vmax of 3.9 V. Given the availability of the ACT carbon (obtained from a commercial material), the PYR1(2O1)TFSI-based AEDLCs assembled with ACT carbon electrodes were selected within the EU ILHYPOS project for the development of large-size prototypes. This study demonstrated that PYR1(2O1)TFSI-based AEDLC can operate between -30°C and +60°C and its cycling stability was proved at 60°C up to 27,000 cycles with high Vmax up to 3.8 V. Such AEDLC was further investigated following USABC and DOE FreedomCAR reference protocols for HEV to evaluate its dynamic pulse-power and energy features. It was demonstrated that with Vmax of 3.7 V at T> 30 °C the challenging energy and power targets stated by DOE for power-assist HEVs, and at T> 0 °C the standards for the 12V-TSS and 42V-FSS and TPA 2s-pulse applications are satisfied, if the ratio wmodule/wSC = 2 is accomplished, which, however, is a very demanding condition. Finally, suggestions for further advances in IL-based AEDLC performance were found. Particularly, given that the main contribution to the ESR is the electrode charging resistance, which in turn is affected by the ionic resistance in the pores that is also modulated by pore length, the pore geometry is a key parameter in carbon design not only because it defines the carbon surface but also because it can differentially “amplify” the effect of IL conductivity on the electrode charging-discharging process and, thus, supercapacitor time constant.