978 resultados para Linear response
Resumo:
This study presents an automated system for potentiometric determination of free and total cyanide which employs a homogeneous membrane tubular ion-selective electrode. After the electrode is assembled, it is connected to a system composed of 3 three-way solenoid valves, sample line, carrier line, acid stream, and gas diffusion chamber. A Turbo Pascal® computer program, developed specifically for this task, automatically performs all the steps involved in data acquisition and processing. The proposed analytical procedure offers operational simplicity, since detection is performed by a tubular electrode, whose assembly is fast and easy. The system has shown reproducibility (r.s.d. < 0.5%, n=6) and high speed (30 readings/hour); it is efficient for determination of free and total cyanide in waste waters of starch processing plants. The detection limit was 1.2x10-5 and 1.5x10-5 mol L-1, for determination of free and total cyanide, respectively. The linear response range was between 1.2x10-5 and 1.0x10-2 mol L-1 for free cyanide and between 1.5x10-5 and 1.0x10-2 for total cyanide.
Resumo:
The pyrethroids bifenthrin, permethrin, cypermethrin and deltamethrin were extracted by solid phase extraction (SPE) and solid phase microextraction (SPME). The analysis were performed on a gas chromatograph with electron capture detection (GC-ECD). Octadecil Silano-C18, Florisil and Silica stationary phases were studied for SPE. Better results were obtained for Florisil which gave recoveries from 80% to 108%. Pyrethroids extraction by SPME showed a linear response and a detection limit of 10 pg ml-1. Although the data showed that the two extraction methods were able to isolate the pesticide residues from water samples, the best results were obtained by using SPME which is more sensitive, faster, cheeper, being a more useful technique for the analysis of pyrethroids in drinking water.
Resumo:
An automatic flow injection procedure for spectrophotometric aluminium determination in purified water and solutions containing high salts concentrations used for hemodyalisis treatment was developed. The method was base on reaction of Al3+ with cianine eriochrome R (ECR) after preconcentration using the AG50W-X8 cationic-exchange resin. Elution was carried out using a 1 % (m/v) calcium chloride solution. The manifold comprised an automatic proporcional injector controlled by a computer equipped with an eletronic interface and software written in QuicBASIC 4.5 with facilities to control the injector and perform data acquisition. Samples with concentration ranging from 4.96 to 19.90 µg L-1 Al were analyzed and recoveries between 88 and 113% were obtained by using the standard addition method. Other profitable analytical characteristics such as a relative standard deviation 1.3 % (n = 10) for a typical sample 14.5 µg L-1 Al, a linear response ranging up to 60.0 µg L-1Al, and a sampling throughput of 10 determinations per hour were achieved. A detection limit of 4.2 µg L-1 Al was estimated as suggested by IUPAC.
Resumo:
A simple and low cost device (ca. US$ 150) that comprises two photodiodes fixed in lab-made Perspex flow cell is proposed for chemiluminescence measurements. The characteristics of the device (large observation window and reduced thickness) allow maximizing the amount of the emitted radiation detected. A sensitivity improvement of ca. 50 % was observed by employing two photodiodes for signal measurements. The performance of the device was assessed by the oxidation of luminol by hydrogen peroxide, yielding a linear response within the range of 2.50 to 500 µmol L-1 H2O2. The detection limit was estimated as 0.8 µmol L-1 hydrogen peroxide which is comparable with those obtained by using equipments based on photomultipliers.
Resumo:
A brief discussion about the hydrogen peroxide importance and its determination is presented. It was emphasized some consideration of the H2O2 as reagent (separated or combined), uses and methods of analysis (techniques, detection limits, linear response intervals, sensor specifications). Moreover, it was presented several applications, such as in environmental, pharmaceutical, medicine and food samples.
Resumo:
In this work a micro-heater device to be used as an integral part of the flow analysis manifold is described. The usefulness of the device was demonstrated using it in the development of a multicommutated flow analysis procedure for the spectrophotometric determination of manganese in plant digest. The method was based on the manganese oxidation by periodate in phosphoric acid medium to form the permanganate anion. The reaction development is dependent on the temperature and it was observed that at 25 °C a time interval of ca. 15 min was necessary for the reaction to attain equilibrium. Setting the temperature to 70 ºC, this time interval could be decreased to ca. 30 s. This condition was easily attained employing the proposed micro-heater device coupled to the manifold. The procedure was applied to manganese determination in soybean digests and results compared with those obtained by inductively coupled argon plasma optical emission spectrometry (ICP-OES). No significant difference at 90% confidence level was observed. A linear response for sample concentrations ranging from 5.0 to 30.00 mg L-1 Mn2+; a relative standard deviation of 1.3% (n = 6) for a typical sample containing 6.3 mg L-1 Mn2+; a sampling rate of 22 determinations per hour; a low reagent consumption, of 12.0 mg NaIO4 per determination; and a detection limit of 1.2 mg L-1 were achieved.
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
The construction and analytical evaluation of a coated graphite Al(III) ion-selective electrode, based on the ionic pair formed between the Al(F)n3-n anion and tricaprylylmethylammonium cation (Aliquat 336S) incorporated on a poly(vinylchloride) (PVC) matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh) in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter) attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m) of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m) of DBPh and 15% (m/m) of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III) ion-selective electrode showed a linear response ranging from 1.4 x 10-4 to 1.0 x 10-2 mol L-1, a detection limit of 4.0 x 10-5 mol L-1, aslope of -54.3±0.2mV dec-1 and a lifetime of more than 1 year (over 3000 determinations for each membrane). The slope indicates that the ion-selective electrode responds preferentially to the Al(F)4- species. Application of this electrode for the aluminium(III) determination in stomach anti-acid samples is reported.
Resumo:
Automatic flow procedures based on the multicommutation concept, dedicated to the determination of 3-hydroxybutyrate, glucose and cholesterol are proposed. The enzymes were immobilized on glass beads and packed into mini-columns that were coupled to a flow system. Sampling throughputs of 55, 40 and 40 determinations per hour, linear response from 10 to 150, 50 to 600, 25 to 125 mg L-1, detection limits of 1.5, 14 and 4 mg L-1 and relative standard deviations of 1, 2 and 2% for 3-hydroxybutyrate, glucose and cholesterol, respectively, were achieved.
Resumo:
A simple and low-cost flow cell with 30 cm optical path for spectrophotometric measurements is described. It presents desirable characteristics such as low attenuation of the radiation beam and internal volume (75 µL) comparable to that of a 1-cm conventional cell (80 µL). Despite the increase in optical path, the effect on sample dispersion was also similar to that attained in the commercial cell. The performance of the cell was assessed by the determination of phosphate based on the molybdenum blue method, yielding a linear response range between 0.05 and 0.8 mg L-1 phosphorus (r=0.999). The increase in sensitivity (30.4-fold) in comparison with that obtained with a conventional 1-cm flow cell agreed with that estimated by the Lambert-Beer law.
Resumo:
An apparatus which allows the direct measurement of the antioxidant capacity of volatiles compounds emitted from some herbs and culinary spices is described. The device comprises: a sample chamber, a mixing chamber, a pump and, a detection system. Volatiles from Clove (Syzygium aromaticum (L.) Merr. & L.M. Perry) were purged and captured into a DPPH-containing solution and changes in the absorbance were recorded on-line. Linear response was observed when temperature was set between 30-53 ºC; nitrogen flow was 15 mL min-1 during 60 min; DPPH concentration was 20 µmol L-1 and a sample size (powdered Clove) ranged between 200-1000 mg.
Resumo:
A simple flow-injection amperometric procedure using a three-electrode-integrated sensor for the determination of H2O2 in antiseptic mouthwash is reported. This method involves the use of a working composite electrode modified with Prussian Blue (PB) particles that was easily adapted as detector in FIA. The best amperometric response was observed for a composite containing 30% of graphite modified with PB particles (GAP) and 70% of pure graphite (GR). The proposed method presents a linear response in the range of 10 to 200 μmol L-1. The detection and quantification limits were 0.8 and 2.6 μmol L-1, respectively.
Resumo:
This study describes the validation of a spectrophotometric method to estimate oligonucleotides association with cationic nanoemulsions. Phosphodiester and phosphorothioate oligonucleotides targeting Plasmodium falciparum topoisomerase II were analyzed at 262 nm. Linear response (r > 0.998) was observed from 0.4 to 1.0 nmol/mL, the relative standard deviation values for the intra- and inter-days precision were lower than 2.6% and the recovery ranged from 98.8 to 103.6% for both oligonucleotides. The association efficiency was estimated based on an ultrafiltration/centrifugation method. Oligonucleotides recovery through 30 kDa-membranes was higher than 92%. The extent of oligonucleotides association (42 to 98%) varied with the composition of nanoemulsions
Resumo:
Simple, sensitive and accurate spectrophotometric derivative methods were developed for the simultaneous determination of olanzapine and fluoxetine hydrochloride in pharmaceutical formulations by derivative spectrophotometry. On all orders of derivative studied, the linear response range was 10 to 60 mg L-1, with limit of quantitation (LoQ) ranging from 0.73 to 1.49 mg L-1 for fluoxetine hydrochloride and from 0.18 to 0.96 mg L-1 for olanzapine. The best orders for derivative analyses showed recoveries ranging from 99 to 103% and from 98 to 100%, and inter-day accuracy < 2.1% and < 2.8%, for fluoxetine hydrochloride and olanzapine, respectively.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.