962 resultados para Lineage-specific domain
Resumo:
Summary Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis a/egans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanism by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL1/CHK-1 dependent checkpoint in P1 but how the remaining time difference is controlled was not known at the onset of my work. The principal line of work in this thesis established that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by anterior-posterior (A-P) polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1 but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, these findings favor a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1 dependent preferential retardation in P1 and PLK-1 dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development. Besides analyzing PLK-1 asymmetry and its role in differential timing of two-cells stage embryos, we also characterized t2190, a mutant that exhibits reduced differential timing between AB and P1. We found this mutant to be a new allele of par-1. Additionally, we analyzed the role of NMY-2 in regulating the asynchrony of two-cell stage embryos, which may be uncoupled from its role in A-P polarity establishment and carried out a preliminary analysis of the mechanism underlying CDC-25 asymmetry between AB and P,. Overall, our works bring new insights into the mechanism controlling cell cycle progression in early C. elegans embryos. As most of the players important in C. elegans are conserved in other organisms, analogous mechanisms may be utilized in polarized cells of other species. Résumé Au cours du développement, les processus de division cellulaire sont régulés dans l'espace et le temps afin d'aboutir à la formation d'un organisme fonctionnel. Chez les Métazoaires, l'un des mécanismes de contrôle s'effectue au niveau de la durée du cycle cellulaire, celle-ci étant specifiée selon la lignée cellulaire. L'embryon du nématode Caenorhabditis elegans apparaît comme un excellent modèle d'étude de la régulation temporelle du cycle cellulaire. En effet, suite à la première division du zygote, l'embryon est alors composé de deux cellules de taille et d'identité différentes, appelées blastomères AB et P1. Ces deux cellules vont ensuite se diviser de manière asynchrone, le grand blastomère antérieur AB se divisant plus rapidement que le petit blastomère postérieur P1. Cette asynchronie de division est sous le contrôle des protéines PAR qui sont impliquées dans l'établissement de l'axe antéro-postérieur de l'embryon. A ce jour, les mécanismes moléculaires gouvernant ce processus d'asynchronie ne sont que partiellement compris. Des études menées précédemment ont établit que le retard de division observé dans le petit blastomère postérieur P1 était dû, en partie, à l'activation préférentielle dans cette cellule de ATL-1/CHK-1, protéines contrôlant la réponse à des erreurs dans le processus de réplication de l'ADN. L'analyse des autres mécanismes responsables de la différence temporelle d'entrée en mitose des deux cellules a été entreprise au cours de cette thèse. Nous avons considéré la possibilité que l'asynchronie de division était du à l'entrée préférentielle en mitose du grand blastomère AB. Nous avons établi que la protéine kinase PLK-1 (polo-like kinase 1), impliquée dans la régulation positive de la mitose, était distribuée de manière asymétrique dans l'embryon deux cellules. PLK-1 est en effet enrichi dans le blastomère AB. Cette localisation asymétrique de PLK-1 est sous le contrôle des protéines PAR et semble établie via une rétention de PLK-1 dans la cellule AB. Par ailleurs, nous avons démontré que l'inactivation partielle de plk-7 par interférence à ARN (RNAi) conduit à un délai de l'entrée en mitose de la cellule P1 spécifiquement, indépendamment des protéines régulatrices ATL-1/CHK-1. En conclusion, nous proposons un modèle de régulation temporelle de l'entrée en mitose dans l'embryon deux cellules de C. elegans basé sur deux mécanismes complémentaires. Le premier implique l'activation préférentielle des protéines ATL-1/CHK-1, et conduit à un retard d'entrée en mitose spécifiquement dans la cellule P1. Le second est basé sur la localisation asymétrique de la protéine kinase PLK-1 dans la cellule AB et induit une entrée précoce en mitose de cette cellule. Par ailleurs, nous avons étudié un mutant appelé t2190 qui réduit la différence temporelle d'entrée en mitose entre les cellules AB et P1. Nous avons démontré que ce mutant correspondait à un nouvel allèle du Bene par-1. De plus, nous avons analysé le rôle de NMY-2, une protéine myosine qui agit comme moteur moléculaire sur les filaments d'active; dans la régulation de l'asynchronie de division des blastomères AB et P1, indépendamment de sa fonction dans l'établissement de l'axe antéro-postérieur. Par ailleurs, nous avons commencé l'étude du mécanisme moléculaire régulant la localisation asymétrique entre les cellules AB et P1 de la protéine phosphatase CDC25, qui est également un important régulateur de l'entrée en mitose. En conclusion, ce travail de thèse a permis une meilleure compréhension des mécanismes gouvernant la progression du cycle cellulaire dans l'embryon précoce de C. elegans. Etant donné que la plupart des protéines impliquées dans ces processus sont conservées chez d'autres organismes multicellulaires, il apparaît probable que les mécanismes moléculaires révélés dans cette étude soit aussi utilisés chez ceux-ci.
Resumo:
Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Resumo:
Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.
Resumo:
Alternative splicing produces multiple isoforms from the same gene, thus increasing the number of transcripts of the species. Alternative splicing is a virtually ubiquitous mechanism in eukaryotes, for example more than 90% of protein-coding genes in human are alternatively spliced. Recent evolutionary studies showed that alternative splicing is a fast evolving and highly species- specific mechanism. The rapid evolution of alternative splicing was considered as a contribution to the phenotypic diversity between species. However, the function of many isoforms produced by alternative splicing remains unclear and they might be the result of noisy splicing. Thus, the functional relevance of alternative splicing and the evolutionary mechanisms of its rapid divergence among species are still poorly understood. During my thesis, I performed a large-scale analysis of the regulatory mechanisms that drive the rapid evolution of alternative splicing. To study the evolution of alternative splicing regulatory mechanisms, I used an extensive RNA-sequencing dataset comprising 12 tetrapod species (human, chimpanzee and bonobo, gorilla, orangutan, macaque, marmoset, mouse, opossum, platypus, chicken and frog) and 8 tissues (cerebellum, brain, heart, kidney, liver, testis, placenta and ovary). To identify the catalogue of alternative splicing eis-acting regulatory elements in the different tetrapod species, I used a previously defined computational approach. This approach is a statistical analysis of exons/introns and splice sites composition and relies on a principle of compensation between splice sites strength and the presence of additional regulators. With an evolutionary comparative analysis of the exonic eis-acting regulators, I showed that these regulatory elements are generally shared among primates and more conserved than non-regulatory elements. In addition, I showed that the usage of these regulatory elements is also more conserved than expected by chance. In addition to the identification of species- specific eis-acting regulators, these results may explain the rapid evolution of alternative splicing. I also developed a new approach based on evolutionary sequence changes and corresponding alternative splicing changes to identify potential splicing eis-acting regulators in primates. The identification of lineage-specific substitutions and corresponding lineage-specific alternative splicing changes, allowed me to annotate the genomic sequences that might have played a role in the alternative splicing pattern differences among primates. Finally, I showed that the identified splicing eis-acting regulator datasets are enriched in human disease-causing mutations, thus confirming their biological relevance.
Resumo:
Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.
Resumo:
Reusability has become more popular factor in modern software engineering. This is mainly because object-orientation has brought methods that allow reusing more easily. Today more and more application developer thinks how they can reuse already existing applications in their work. If the developer wants to use existing components outside the current project, he can use design patterns, class libraries or frameworks. These provide solution for specific or general problems that has been already encountered. Application frameworks are collection of classes that provides base for the developer. Application frameworks are mostly implementation phase tools, but can also be used in application design. The main purpose of the frameworks is separate domain specific functionalities from the application specific. Usually the frameworks are divided into two categories: black and white box. Difference between those categories is the way the reuse is done. The application frameworks provide properties that can be examined and compared between different frameworks. These properties are: extensibility, reusability, modularity and scalability. These examine how framework will handle different platforms, changes in framework, increasing demand for resources, etc. Generally application frameworks do have these properties in good level. When comparing general purpose framework and more specific purpose framework, the main difference can be located in reusability of frameworks. It is mainly because the framework designed to specific domain can have constraints from external systems and resources. With general purpose framework these are set by the application developed based on the framework.
Resumo:
Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.
Resumo:
The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.
Resumo:
The research assesses the skills of upper comprehensive school pupils in history. The focus is on locating personal motives, assessing wider reasons hidden in historical sources and evaluating source reliability. The research also questions how a wide use of multiple sources affects pupils’ holistic understanding of historical phenomena. The participants were a multicultural group of pupils. The origins of their cultures can be traced to the Balkan, the Middle East, Asia and Europe. The number of native Finnish speakers and pupils speaking Finnish as their second language was almost equal. The multicultural composition provides opportunities to assess how culturally responsive learning history from sources is. The intercultural approach to learning in a multicultural setting emphasizes equality as a precondition for learning. In order to set assignments at least to some extent match with all participants only those answers were taken into account which were produced by pupils who had studied history for a similar period of time in the Finnish comprehensive school system. Due to the small number of participants (41), the study avoids wide generalizations. Nevertheless, possible cultural blueprints in pupils’ way of thinking are noted. The first test examined the skills of pupils to find motives for emigration. The results showed that for 7th graders finding reasons is not a problematic task. However, the number of reasons noticed and justifications varied. In addition, the way the pupils explained their choices was a distinguishing factor. Some pupils interpreted source material making use of previous knowledge on the issue, while other pupils based their analysis solely on the text handed and did not try to add their own knowledge. Answers were divided into three categories: historical, explanatory and stating. Historical answers combined smoothly previously learned historical knowledge to one’s own source analysis; explanatory answers often ignored a wider frame, although they were effective when explaining e.g. historical concepts. The stating answers only noticed motives from the sources and made no attempts to explain them historically. Was the first test culturally responsive? All pupils representing different cultures tackled the first source exam successfully, but there were some signs of how historical concepts are understood in a slightly different way if the pupil’s personal history has no linkage to the concepts under scrutiny. The second test focused on the history of Native Americans. The test first required pupils to recognize whether short source extracts (5) were written by Indians or Caucasians. Based on what they had already learned from North American history, the pupils did not find it hard to distinguish between the sources. The analysis of multiphase causes and consequences of the disputes between Native Americans and white Americans caused dispersion among pupils. Using two historical sources and combining historical knowledge from both of them simultaneously was cumbersome for many. The explanations of consequences can be divided into two groups: the ones emphasizing short term consequences and those placing emphasis on long term consequences. The short term approach was mainly followed by boys in every group. The girls mainly paid attention to long term consequences. The result suggests that historical knowledge in sources is at least to some extent read through role and gender lenses. The third test required pupils to explain in their own words how the three sources given differed in their account of living conditions in Nazi Germany, which turned out to be demanding for many pupils. The pupils’ stronghold was rather the assessment of source reliability and accounts why the sources approached the same events differently. All participants wrote critical and justified comments on reliability and aspects that might have affected the content of the sources. The pupils felt that the main reasons that affected source reliability were the authors’ ethnic background, nationality and profession. The assessment showed that pupils were well aware that position in a historical situation has an impact on historical accounts, but in certain cases the victim’s account was seen as a historical truth. The account of events by a historian was chosen most often as the most reliable source, but it was often justified leniently with an indication to professionalism rather than with clear ideas of how historians conduct accounts based on sources. In brief, the last source test demonstrates that pupils have a strong idea that the ethnicity or nationalism determines how people explained events of the past. It is also an implication that pupils understand how historical knowledge is interpretative. The results also imply that history can be analyzed from a neutral perspective. One’s own membership in an ethnical or religious group does not automatically mean that a person’s cultural identity excludes historical explanations if something in them contradicts with his or her identity. The second method of extracting knowledge of pupils’ historical thinking was an essay analysis. The analysis shows that an analytical account of complicated political issues, which often include a great number of complicated political concepts, leads more likely to an inconsistent structure in the written work of pupils. The material also demonstrates that pupils have a strong tendency to take a critical stance when assessing history. Historical empathy in particular is shown if history somehow has a linkage to young people, children or minorities. Some topics can also awake strong feelings, especially among pupils with emigrant background, if there is a linkage between one’s own personal history and that of the school; and occasionally a student’s historical experience or thoughts replaced school history. Using sources during history lessons at school seems to have many advantages. It enhances the reasoning skills of pupils and their skills to assess the nature of historical knowledge. Thus one of the main aims and a great benefit of source work is to encourage pupils to express their own ideas and opinions. To conclude, when assessing the skills of adolescents in history - their work with sources, comments on history, historical knowledge and finally their historical thinking - one should be cautious and avoid cut off score evaluations. One purpose of pursuing history with sources is to encourage pupils to think independently, which is a useful tool for further identity construction. The idea that pupils have the right to conduct their own interpretations of history can be partially understood as part of a wider learning process, justification to study history comes from extrinsic reasons. The intrinsic reason is history itself; in order to understand history one should have a basic understanding of history as a specific domain of knowledge. Using sources does not mean that knowing history is of secondary importance. Only a balance between knowing the contextual history, understanding basic key concepts and working with sources is a solid base to improve pupils’ historical understanding.
Resumo:
Chondrogenesis is a co-ordinated differentiation process in which mesenchymal cells condensate, differentiate into chondrocytes and begin to secrete molecules that form the extracellular matrix. It is regulated in a spatio-temporal manner by cellular interactions and growth and differentiation factors that modulate cellular signalling pathways and transcription of specific genes. Moreover, post-transcriptional regulation by microRNAs (miRNAs) has appeared to play a central role in diverse biological processes, but their role in skeletal development is not fully understood. Mesenchymal stromal cells (MSCs) are multipotent cells present in a variety of adult tissues, including bone marrow and adipose tissue. They can be isolated, expanded and, under defined conditions, induced to differentiate into multiple cell lineages including chondrocytes, osteoblasts and adipocytes in vitro and in vivo. Owing to their intrinsic capability to self-renew and differentiate into functional cell types, MSCs provide a promising source for cell-based therapeutic strategies for various degenerative diseases, such as osteoarthritis (OA). Due to the potential therapeutic applications, it is of importance to better understand the MSC biology and the regulatory mechanisms of their differentiation. In this study, an in vitro assay for chondrogenic differentiation of mouse MSCs (mMSCs) was developed for the screening of various factors for their chondrogenic potential. Conditions were optimized for pellet cultures by inducing mMSC with different bone morphogenetic proteins (BMPs) that were selected based on their known chondrogenic relevance. Characterization of the surface epitope profile, differentiation capacity and molecular signature of mMSCs illustrated the importance of cell population composition and the interaction between different populations in the cell fate determination and differentiation of MSCs. Regulation of Wnt signalling activity by Wnt antagonist sFRP-1 was elucidated as a potential modulator of lineage commitment. Delta-like 1 (dlk1), a factor regulating adipogenesis and osteogenesis, was shown to exhibit stage-specific expression during embryonic chondrogenesis and identified as a novel regulator of chondrogenesis, possibly through mediating the effect of TGF-beta1. Moreover, miRNA profiling demonstrated that MSCs differentiating into a certain lineage exhibit a specific miRNA expression profile. The complex regulatory network between miRNAs and transcription factors is suggested to play a crucial role in fine-tuning the differentiation of MSCs. These results demonstrate that commitment of mesenchymal stromal cells and further differentiation into specific lineages is regulated by interactions between MSCs, various growth and transcription factors, and miRNA-mediated translational repression of lineage-specific genes.
Resumo:
This dissertation examined skill development in music reading by focusing on the visual processing of music notation in different music-reading tasks. Each of the three experiments of this dissertation addressed one of the three types of music reading: (i) sight-reading, i.e. reading and performing completely unknown music, (ii) rehearsed reading, during which the performer is already familiar with the music being played, and (iii) silent reading with no performance requirements. The use of the eye-tracking methodology allowed the recording of the readers’ eye movements from the time of music reading with extreme precision. Due to the lack of coherence in the smallish amount of prior studies on eye movements in music reading, the dissertation also had a heavy methodological emphasis. The present dissertation thus aimed to promote two major issues: (1) it investigated the eye-movement indicators of skill and skill development in sight-reading, rehearsed reading and silent reading, and (2) developed and tested suitable methods that can be used by future studies on the topic. Experiment I focused on the eye-movement behaviour of adults during their first steps of learning to read music notation. The longitudinal experiment spanned a nine-month long music-training period, during which 49 participants (university students taking part in a compulsory music course) sight-read and performed a series of simple melodies in three measurement sessions. Participants with no musical background were entitled as “novices”, whereas “amateurs” had had musical training prior to the experiment. The main issue of interest was the changes in the novices’ eye movements and performances across the measurements while the amateurs offered a point of reference for the assessment of the novices’ development. The experiment showed that the novices tended to sight-read in a more stepwise fashion than the amateurs, the latter group manifesting more back-and-forth eye movements. The novices’ skill development was reflected by the faster identification of note symbols involved in larger melodic intervals. Across the measurements, the novices also began to show sensitivity to the melodies’ metrical structure, which the amateurs demonstrated from the very beginning. The stimulus melodies consisted of quarter notes, making the effects of meter and larger melodic intervals distinguishable from effects caused by, say, different rhythmic patterns. Experiment II explored the eye movements of 40 experienced musicians (music education students and music performance students) during temporally controlled rehearsed reading. This cross-sectional experiment focused on the eye-movement effects of one-bar-long melodic alterations placed within a familiar melody. The synchronizing of the performance and eye-movement recordings enabled the investigation of the eye-hand span, i.e., the temporal gap between a performed note and the point of gaze. The eye-hand span was typically found to remain around one second. Music performance students demonstrated increased professing efficiency by their shorter average fixation durations as well as in the two examined eye-hand span measures: these participants used larger eye-hand spans more frequently and inspected more of the musical score during the performance of one metrical beat than students of music education. Although all participants produced performances almost indistinguishable in terms of their auditory characteristics, the altered bars indeed affected the reading of the score: the general effects of expertise in terms of the two eye- hand span measures, demonstrated by the music performance students, disappeared in the face of the melodic alterations. Experiment III was a longitudinal experiment designed to examine the differences between adult novice and amateur musicians’ silent reading of music notation, as well as the changes the 49 participants manifested during a nine-month long music course. From a methodological perspective, an opening to research on eye movements in music reading was the inclusion of a verbal protocol in the research design: after viewing the musical image, the readers were asked to describe what they had seen. A two-way categorization for verbal descriptions was developed in order to assess the quality of extracted musical information. More extensive musical background was related to shorter average fixation duration, more linear scanning of the musical image, and more sophisticated verbal descriptions of the music in question. No apparent effects of skill development were observed for the novice music readers alone, but all participants improved their verbal descriptions towards the last measurement. Apart from the background-related differences between groups of participants, combining verbal and eye-movement data in a cluster analysis identified three styles of silent reading. The finding demonstrated individual differences in how the freely defined silent-reading task was approached. This dissertation is among the first presentations of a series of experiments systematically addressing the visual processing of music notation in various types of music-reading tasks and focusing especially on the eye-movement indicators of developing music-reading skill. Overall, the experiments demonstrate that the music-reading processes are affected not only by “top-down” factors, such as musical background, but also by the “bottom-up” effects of specific features of music notation, such as pitch heights, metrical division, rhythmic patterns and unexpected melodic events. From a methodological perspective, the experiments emphasize the importance of systematic stimulus design, temporal control during performance tasks, and the development of complementary methods, for easing the interpretation of the eye-movement data. To conclude, this dissertation suggests that advances in comprehending the cognitive aspects of music reading, the nature of expertise in this musical task, and the development of educational tools can be attained through the systematic application of the eye-tracking methodology also in this specific domain.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.
Resumo:
Internet of Things (IoT) technologies are developing rapidly, and therefore there exist several standards of interconnection protocols and platforms. The existence of heterogeneous protocols and platforms has become a critical challenge for IoT system developers. To mitigate this challenge, few alliances and organizations have taken the initiative to build a framework that helps to integrate application silos. Some of these frameworks focus only on a specific domain like home automation. However, the resource constraints in the large proportion of connected devices make it difficult to build an interoperable system using such frameworks. Therefore, a general purpose, lightweight interoperability framework that can be used for a range of devices is required. To tackle the heterogeneous nature, this work introduces an embedded, distributed and lightweight service bus, Lightweight IoT Service bus Architecture (LISA), which fits inside the network stack of a small real-time operating system for constrained nodes. LISA provides a uniform application programming interface for an IoT system on a range of devices with variable resource constraints. It hides platform and protocol variations underneath it, thus facilitating interoperability in IoT implementations. LISA is inspired by the Network on Terminal Architecture, a service centric open architecture by Nokia Research Center. Unlike many other interoperability frameworks, LISA is designed specifically for resource constrained nodes and it provides essential features of a service bus for easy service oriented architecture implementation. The presented architecture utilizes an intermediate computing layer, a Fog layer, between the small nodes and the cloud, thereby facilitating the federation of constrained nodes into subnetworks. As a result of a modular and distributed design, the part of LISA running in the Fog layer handles the heavy lifting to assist the lightweight portion of LISA inside the resource constrained nodes. Furthermore, LISA introduces a new networking paradigm, Node Centric Networking, to route messages across protocol boundaries to facilitate interoperability. This thesis presents a concept implementation of the architecture and creates a foundation for future extension towards a comprehensive interoperability framework for IoT.
Resumo:
La dérégulation de l'expression génétique est une base pathophysiologique de plusieurs maladies. On a utilisé le locus du gène β-globine humain comme modèle pour élucider le mécanisme de régulation de la transcription génétique et évaluer son expression génétique durant l'érythropoïèse. La famille des protéines 'E' est composée de facteurs de transcription qui possèdent plusieurs sites de liaison au sein de locus du gène β-globine, suggérant leur rôle potentiel dans la régulation de l’expression de ces gènes. Nous avons montré que les facteurs HEB, E2A et ETO2 interagissent d’une manière significative avec la région contrôle du Locus (LCR) et avec les promoteurs des gènes de la famille β-globine. Le recrutement de ces facteurs au locus est modifié lors de l'érythropoïèse dans les cellules souches hematopoitiques et les cellules erythroides de souris transgéniques pour le locus de la β-globine humain, ainsi que dans les cellules progénitrices hématopoïétiques humaines. De plus par cette étude, nous démontrons pour la première fois que le gène β-globine humain est dans une chromatine active et qu’il interagit avec des facteurs de transcriptions de type suppresseurs dans les cellules progénitrices lymphoïdes (voie de différentiation alternative). Cette étude a aussi été faite dans des souris ayant une génétique mutante caractérisée par l'absence des facteurs de transcription E2A ou HEB.