866 resultados para Lexical semantics
Resumo:
This paper describes part of an ongoing effort to improve the readability of Swedish electronic health records (EHRs). An EHR contains systematic documentation of a single patient’s medical history across time, entered by healthcare professionals with the purpose of enabling safe and informed care. Linguistically, medical records exemplify a highly specialised domain, which can be superficially characterised as having telegraphic sentences involving displaced or missing words, abundant abbreviations, spelling variations including misspellings, and terminology. We report results on lexical simplification of Swedish EHRs, by which we mean detecting the unknown, out-ofdictionary words and trying to resolve them either as compounded known words, abbreviations or misspellings.
Resumo:
Recent empirical studies about the neurological executive nature of reading in bilinguals differ in their evaluations of the degree of selective manifestation in lexical access as implicated by data from early and late reading measures in the eye-tracking paradigm. Currently two scenarios are plausible: (1) Lexical access in reading is fundamentally language non-selective and top-down effects from semantic context can influence the degree of selectivity in lexical access; (2) Cross-lingual lexical activation is actuated via bottom-up processes without being affected by top-down effects from sentence context. In an attempt to test these hypotheses empirically, this study analyzed reader-text events arising when cognate facilitation and semantic constraint interact in a 22 factorially designed experiment tracking the eye movements of 26 Swedish-English bilinguals reading in their L2. Stimulus conditions consisted of high- and low-constraint sentences embedded with either a cognate or a non-cognate control word. The results showed clear signs of cognate facilitation in both early and late reading measures and in either sentence conditions. This evidence in favour of the non-selective hypothesis indicates that the manifestation of non-selective lexical access in reading is not constrained by top-down effects from semantic context.
Resumo:
This study provides evidence for a Stroop-like interference effect in word recognition. Based on phonologic and semantic properties of simple words, participants who performed a same/different word-recognition task exhibited a significant response latency increase when word pairs (e.g., POLL, ROD) featured a comparison word (POLL) that was a homonym of a synonym (pole) of the target word (ROD). These results support a parallel-processing framework of lexical decision making, in which activation of the pathways to word recognition may occur at different levels automatically and in parallel. A subset of simple words that are also brand names was examined and exhibited this same interference. Implications for word recognition theory and practical implications for strategic marketing are discussed.
Resumo:
350 p.
Resumo:
Technical Report to accompany Ownership for Reasoning About Parallelism. Documents type system which captures effects and the operational semantics for the language which is presented as part of the paper.
Resumo:
We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.
Resumo:
Autonomous development of sensorimotor coordination enables a robot to adapt and change its action choices to interact with the world throughout its lifetime. The Experience Network is a structure that rapidly learns coordination between visual and haptic inputs and motor action. This paper presents methods which handle the high dimensionality of the network state-space which occurs due to the simultaneous detection of multiple sensory features. The methods provide no significant increase in the complexity of the underlying representations and also allow emergent, task-specific, semantic information to inform action selection. Experimental results show rapid learning in a real robot, beginning with no sensorimotor mappings, to a mobile robot capable of wall avoidance and target acquisition.
Resumo:
As business process management technology matures, organisations acquire more and more business process models. The resulting collections can consist of hundreds, even thousands of models and their management poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks. This query language is independent of the particular process modelling notation used, but we will demonstrate how it can be used in the context of Petri nets by showing how the semantic relationships can be determined for these nets in such a way that state space explosion is avoided as much as possible. An experiment with three large process model repositories shows that queries expressed in our language can be evaluated efficiently.
Resumo:
This paper demonstrates an experimental study that examines the accuracy of various information retrieval techniques for Web service discovery. The main goal of this research is to evaluate algorithms for semantic web service discovery. The evaluation is comprehensively benchmarked using more than 1,700 real-world WSDL documents from INEX 2010 Web Service Discovery Track dataset. For automatic search, we successfully use Latent Semantic Analysis and BM25 to perform Web service discovery. Moreover, we provide linking analysis which automatically links possible atomic Web services to meet the complex requirements of users. Our fusion engine recommends a final result to users. Our experiments show that linking analysis can improve the overall performance of Web service discovery. We also find that keyword-based search can quickly return results but it has limitation of understanding users’ goals.