952 resultados para Least Square Method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The histopathology of the liver is fundamental for the differential diagnosis between intra- and extrahepatic causes of neonatal cholestasis. However, histopathological findings may overlap and there is disagreement among authors concerning those which could discriminate between intra- and extrahepatic cholestasis. Forty-six liver biopsies (35 wedge biopsies and 11 percutaneous biopsies) and one specimen from a postmortem examination, all from patients hospitalized for neonatal cholestasis in the Pediatrics Service of Hospital de Clínicas de Porto Alegre, were prospectively studied using a specially designed histopathological protocol. At least 4 of 5 different stains were used, and 46 hepatic histopathological variables related to the differential diagnosis of neonatal cholestasis were studied. The findings were scored for severity on a scale from 0 to 4. Sections which showed less than 3 portal spaces were excluded from the study. Sections were examined by a pathologist who was unaware of the final diagnosis of each case. Bile tract permeability was defined by scintigraphy of the bile ducts and operative cholangiography. The F test and discriminant analysis were used as statistical methods for the study of the hepatic histopathological variables. The chi-square method with Yates correction was used to relate the age of the patients on the date of the histopathological study to the discriminatory variables between intra- and extrahepatic cholestasis selected by the discriminant function test. The most valuable hepatic histopathological variables for the discrimination between intra- and extrahepatic cholestasis, in decreasing order of importance, were periportal ductal proliferation, portal ductal proliferation, portal expansion, cholestasis in neoductules, foci of myeloid metaplasia, and portal-portal bridges. The only variable which pointed to the diagnosis of intrahepatic cholestasis was myeloid metaplasia. Due to the small number of patients who were younger than 60 days on the date of the histopathological study (N = 6), no variable discriminated between intra- and extrahepatic cholestasis before the age of 2 months and all of them, except for the portal expansion, were discriminatory after this age. In infants with cholestasis, foci of myeloid metaplasia, whenever present in the liver biopsy, suggested intrahepatic cholestasis. Periportal ductal proliferation, portal ductal proliferation, portal expansion, cholestasis in neoductules, portal cholestasis and portal-portal bridges suggested extrahepatic obstructive cholestasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mann–Kendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889–1918 (NP1), 1919–1948 (NP2), 1949–1978 (NP3) and 1979–2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June– September, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889–2008) mean annual rainfall of CNE India is 1,195.1 mm with a standard deviation of 134.1 mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6 mm/year for Jharkhand and 3.2 mm/day for CNE India. Since rice crop is the important kharif crop (May– October) in this region, the decreasing trend of rainfall during themonth of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During themonth of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November–March) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914– 2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during postmonsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4– 8 years peak periodicity band has been noticed during September over Western UP, and 30–34 years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En esta Tesis se presenta el modelo de Kou, Difusión con saltos doble exponenciales, para la valoración de opciones Call de tipo europeo sobre los precios del petróleo como activo subyacente. Se mostrarán los cálculos numéricos para la formulación de expresiones analíticas que se resolverán mediante la implementación de algoritmos numéricos eficientes que conllevaran a los precios teóricos de las opciones evaluadas. Posteriormente se discutirán las ventajas de usar métodos como la transformada de Fourier por la sencillez relativa de su programación frente a los desarrollos de otras técnicas numéricas. Este método es usado en conjunto con el ejercicio de calibración no paramétrica de regularización, que mediante la minimización de los errores al cuadrado sujeto a una penalización fundamentada en el concepto de entropía relativa, resultaran en la obtención de precios para las opciones Call sobre el petróleo considerando una mejor capacidad del modelo de asignar precios justos frente a los transados en el mercado.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bitter taste elicited by dairy protein hydrolysates (DPH) is a renowned issue for their acceptability by consumers and therefore incorporation into foods. The traditional method of assessment of taste in foods is by sensory analysis but this can be problematic due to the overall unpleasantness of the samples. Thus, there is a growing interest into the use of electronic tongues (e-tongues) as an alternative method to quantify the bitterness in such samples. In the present study the response of the e-tongue to the standard bitter agent caffeine and a range of both casein and whey based hydrolysates was compared to that of a trained sensory panel. Partial least square regression (PLS) was employed to compare the response of the e-tongue and the sensory panel. There was strong correlation shown between the two methods in the analysis of caffeine (R2 of 0.98) and DPH samples with R2 values ranging from 0.94-0.99. This study exhibits potential for the e-tongue to be used in bitterness screening in DPHs to reduce the reliance on expensive and time consuming sensory panels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho observa como as variáveis macroeconômicas (expectativa de inflação, juro real, hiato do produto e a variação cambial) influenciam a dinâmica da Estrutura a Termo da Taxa de Juros (ETTJ). Esta dinâmica foi verificada introduzindo a teoria de Análise de Componentes Principais (ACP) para capturar o efeito das componentes mais relevantes na ETTJ (nível, inclinação e curvatura). Utilizando-se as estimativas por mínimos quadrados ordinários e pelo método generalizado dos momentos, foi verificado que existe uma relação estatisticamente significante entre as variáveis macroeconômicas e as componentes principais da ETTJ.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study aims to identify the factors that influence the behavior intention to adopt an academic Information System (SIE), in an environment of mandatory use, applied in the procurement process at the Federal University of Pará (UFPA). For this, it was used a model of innovation adoption and technology acceptance (TAM), focused in attitudes and intentions regarding the behavior intention. The research was conducted a quantitative survey, through survey in a sample of 96 administrative staff of the researched institution. For data analysis, it was used structural equation modeling (SEM), using the partial least squares method (Partial Least Square PLS-PM). As to results, the constructs attitude and subjective norms were confirmed as strong predictors of behavioral intention in a pre-adoption stage. Despite the use of SIE is required, the perceived voluntariness also predicts the behavior intention. Regarding attitude, classical variables of TAM, like as ease of use and perceived usefulness, appear as the main influence of attitude towards the system. It is hoped that the results of this study may provide subsidies for more efficient management of the process of implementing systems and information technologies, particularly in public universities

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to examine how students perceives the factors that may influence them to attend a training course offered in the distance virtual learning environment (VLE) of the National School of Public Administration (ENAP). Thus, as theoretical basis it was used the Unified Theory of Acceptance and Use of Technology (UTAUT), the result of an integration of eight previous models which aimed to explain the same phenomenon (acceptance/use of information technology). The research approach was a quantitative and qualitative. To achieve the study objectives were made five semi-structured interviews and an online questionnaire (websurvey) in a valid sample of 101 public employees scattered throughout the country. The technique used to the analysis of quantitative data was the structural equation modeling (SEM), by the method of Partial Least Square Path Modeling (PLS-PM). To qualitative data was the thematic content analysis. Among the results, it was found that, in the context of public service, the degree whose the individual believes that the use of an AVA will help its performance at work (performance expectancy) is a factor to its intended use and also influence its use. Among the results, it was found that the belief which the public employee has in the use of a VLE as a way to improve the performance of his work (performance expectation) was determinant for its intended use that, in turn, influenced their use. It was confirmed that, under the voluntary use of technology, the general opinion of the student s social circle (social influence) has no effect on their intention to use the VLE. The effort expectancy and facilitating conditions were not directly related to the intended use and use, respectively. However, emerged from the students speeches that the opinions of their coworkers, the ease of manipulate the VLE, the flexibility of time and place of the distance learning program and the presence of a tutor are important to their intentions to do a distance learning program. With the results, it is expected that the managers of the distance learning program of ENAP turn their efforts to reduce the impact of the causes of non-use by those unwilling to adopt voluntarily the e-learning, and enhance the potentialities of distance learning for those who are already users

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work has as objective to present a method of project and implementation of controllers PID, based on industrial instrumentation. An automatic system of auto-tunning of controllers PID will be presented, for systems of first and second order. The software presented in this work is applied in controlled plants by PID controllers implemented in a CLP. Software is applied to make the auto-tunning of the parameters of controller PID of plants that need this tunning. Software presents two stages, the first one is the stage of identification of the system using the least square recursive algorithm and the second is the stage of project of the parameters of controller PID using the root locus algorithm. An important fact of this work is the use of industrial instrumentation for the accomplishment of the experiments. The experiments had been carried through in controlled real plants for controllers PID implemented in the CLP. Thus has not only one resulted obtained with theoreticians experiments made with computational programs, and yes resulted obtained of real systems. The experiments had shown good results gotten with developed software