986 resultados para Latitudinal Gradient Project
Resumo:
Ecological work carried out on the Antarctic and Magellan shelves since the first IBMANT conference held at the UMAG, Punta Arenas in 1997 is summarized to identify areas where progress has been made and others, where impor- tant gaps have remained in understanding past and present interaction between the Antarctic and the southern tip of South America. This information is complementary to a review on shallow-water work along the Scotia Arc (Barnes, 2005) and recent work done in the deep sea (Brandt and Hilbig, 2004). While principally referring to shipboard work in deeper water, above all during the recent international EASIZ and LAMPOS campaigns, relevant work from shore stations is also included. Six years after the first IBMANT symposium, significant progress has been made along the latitudinal gradient from the Magellan region to the high Antarctic in the fields of biodiversity, biogeography and community structure, life strategies and adaptations, the role of disturbance and its significance for biodiversity, and trophic coupling of the benthic realm with the water column and sea ice. A better understanding has developed of the role of evolutionary and ecological factors in shaping past and present-day environmental conditions, species composition and distribution, and ecosystem functioning. Furthermore, the science community engaged in unravelling Antarctic-Magellan interactions has advanced in methodological aspects such as new analytical approaches for comparing biodiversity derived from visual methods, growth and age determination, trophic modelling using stable isotope ratios, and molecular approaches for taxonomic and phylogenetic purposes. At the same time, much effort has been invested to complement the species inventory of the two adjacent regions. However, much work remains to be done to fill the numerous gaps. Some perspectives are outlined in this review, and sug- gestions are made where particular emphasis should be placed in future work, much of which will be developed in the frame of SCAR's EBA (Evolution and Biodiversity in the Antarctic) programme.
Resumo:
Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; d18O, d13C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.
Resumo:
The aeolid nudibranch Pteraeolidia ianthina hosts symbiotic dinoflagellates in the same way as many reef-building corals. This widespread Indo-Pacific sea slug ranges from tropical to temperate waters, and offers a unique opportunity to examine a symbiosis that occurs over a large latitudinal gradient. We used partial 28S and 18S nuclear ribosomal (nr) DNA to examine the genetic diversity of the Symbiodinium dinoflagellates contained within F ianthina. We detected Symbiodinium from genetic clades A, B, C and D. P. ianthina from tropical regions (Singapore, Sulawesi) host Symbiodinium clade C or D or both; those from the subtropical eastern Australian coast (Heron Island, Mon Repo, Moreton Bay, Tweed Heads) host Symbiodinium clade C, but those from the temperate southeastern Australian coastline (Port Stephens, Bare Island) host clade A or B or both. The Symbiodinium populations within 1 individual nudibranch could be homogeneous or heterogeneous at inter- or intra-clade levels (or both). Our results suggested that the Pteraeolidia-Symbiodinium symbiosis is flexible and favours symbiont phylotypes best adapted for that environment. This flexibility probably reflects the function of the symbiont clade in relation to the changing environments experienced along the latitudinal range, and facilitates the large geographic range of P. ianthina.
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).
Resumo:
BACKGROUND: Concentrations of brominated flame retardants (BFRs) are reported to increase in marine ecosystems. OBJECTIVES: Characterize exposure to BFRs in animals from different trophic levels in North-East Atlantic coastal marine ecosystems along a latitudinal gradient from southern Norway to Spitsbergen, Svalbard, in the Arctic. Calanoid species were collected from the Oslofjord (59°N), Froan (64°N), and Spitsbergen (> 78°N); Atlantic cod (Gadus morhua) from the Oslofjord and Froan; polar cod (Boreogadus saida) from Bear Island (74°N) and Spitsbergen; harbor seal (Phoca vitulina) from the Oslofjord, Froan, and Spitsbergen; and ringed seal (Phoca vitulina) from Spitsbergen. Eggs of common tern (Sterna hirundo) were collected from the Oslofjord, and eggs of arctic terns (Sterna paradisaea) from Froan and Spitsbergen. RESULTS: Levels of polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD) generally decreased as a function of increasing latitude, reflecting distance from release sources. The clear latitudinal decrease in levels of BFRs was not pronounced in the two tern species, most likely because they are exposed during migration. The decabrominated compound BDE-209 was detected in animals from all three ecosystems, and the highest levels were found in arctic tern eggs from Spitsbergen. HBCD was found in animals from all trophic levels, except for in calanoids at Froan and Spitsbergen. CONCLUSIONS: Even though the levels of PBDEs and HBCD are generally low in North-East Atlantic coastal marine ecosystems, there are concerns about the relatively high presence of BDE-209 and HBCD.
Resumo:
Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change.
Resumo:
L’effet du climat sur la croissance de la végétation est depuis longtemps un fait acquis. Les changements climatiques globaux ont entrainé une augmentation des efforts de recherche sur l’impact de ces changements en milieux naturels, à la fois en termes de distribution et d’abondance des espèces, mais également à travers l’étude des rendements des espèces commerciales. La présente étude vise à déterminer, à travers l’utilisation de relevés dendrochronologiques, les effets de variables climatiques sur la croissance de l’épinette noire et du sapin baumier à l’échelle de la forêt boréale du Québec. Le but est d’identifier les principaux modificateurs climatiques responsables de la croissance des peuplements boréaux en fonction de leur âge et de leur localisation. Se focalisant sur un modèle non-linéaire des moindres carrés incorporant les modificateurs climatiques et un modificateur d’âge, la modélisation de la croissance en surface terrière en fonction de ces critères a permis de détecter des différences entre le sapin baumier et l’épinette noire. Les résultats montrent que les deux espèces réagissent surtout à la longueur de la saison de croissance et aux températures estivales maximales. L’épinette noire semble également plus sensible aux conditions de sécheresse. Les modèles basés sur l’âge ainsi que sur la localisation le long d’un gradient nord-sud révèlent quelques différences, notamment concernant la réaction plus prononcée des jeunes peuplements au climat, en particulier aux températures, tandis que les vieux peuplements sont sensibles au rayonnement solaire. L’étude démontre tout de même une relative indépendance de l’épinette vis-à-vis du gradient latitudinal, à l’inverse du sapin. Les résultats permettent de discuter des modifications de productivité de ces espèces liées à l’allongement de la saison de croissance (gain pour les deux essences) et aux températures croissantes en conjonction avec les précipitations (perte due à la sécheresse pour l’épinette), dans un contexte de changements climatiques.
Resumo:
Les changements climatiques récents ont mené à l’expansion de la répartition de plusieurs espèces méridionales, mais ont aussi causé l’extinction locale d’espèces se retrouvant à la limite de leur tolérance environnementale. Ces populations en expansion peuvent favoriser différentes stratégies d’histoire de vie en répondant à différents facteurs limitants. Dans cette thèse, je vise à déterminer et quantifier l’effet du climat et des évènements extrêmes sur le cycle de vie complet d’une espèce en expansion (le dindon sauvage) pour comprendre les changements au niveau populationnel ainsi que les mécanismes impliqués dans l’expansion de la distribution d’une espèce. J’ai défini les évènements extrêmes de pluie, d’épaisseur de neige au sol et de température, comme un évènement dont la fréquence est plus rare que le 10e et 90e percentile. En utilisant l’approche « Measure-Understand-Predict » (MUP), j’ai tout d’abord suivi trois populations le long d’un gradient latitudinal de sévérité hivernale pour mesurer l’effet de variables météorologiques sur la dynamique des populations. La survie des dindons sauvages diminuait drastiquement lorsque l’accumulation de neige au sol dépassait 30 cm pour une période de 10 jours et diminuait également avec la température. Au printemps, la persistance de la neige affectait négativement le taux d’initiation de la nidification et l’augmentation de la pluie diminuait la survie des nids. Dans une deuxième étape, j’ai examiné l’impact des évènements climatiques extrêmes et des processus démographiques impliqués dans l’expansion du dindon, liés à la théorie des histoires de vie pour comprendre la relation entre la dynamique de ces populations en expansions avec le climat. J’ai démontré que la fréquence des évènements extrêmes hivernaux et, d’une façon moins importante, les évènements extrêmes estivaux limitaient l’expansion nordique des dindons sauvages. J’ai appuyé, à l’aide de données empiriques et de modélisation, les hypothèses de la théorie classique des invasions biologiques en montrant que les populations en établissement priorisaient les paramètres reproducteurs tandis que la survie adulte était le paramètre démographique affectant le plus la dynamique des populations bien établies. De plus, les populations les plus au nord étaient composées d’individus plus jeunes ayant une espérance de vie plus faible, mais avaient un potentiel d’accroissement plus élevé que les populations établies, comme le suggère cette théorie. Finalement, j’ai projeté l’impact de la récolte sur la dynamique des populations de même que le taux de croissance de cette espèce en utilisant les conditions climatiques futures projetées par les modèles de l’IPCC. Les populations en établissement avaient un taux de récolte potentiel plus élevé, mais la proportion de mâles adultes, possédant des caractéristiques recherchées par les chasseurs, diminuait plus rapidement que dans les populations établies. Dans le futur, la fréquence des évènements extrêmes de pluie devrait augmenter tandis que la fréquence des évènements extrêmes de température hivernale et d’accumulation de neige au sol devraient diminuer après 2060, limitant probablement l’expansion nordique du dindon sauvage jusqu’en 2100. Cette thèse améliore notre compréhension des effets météorologiques et du climat sur l’expansion de la répartition des espèces ainsi que les mécanismes démographiques impliqués, et nous a permis de prédire la probabilité de l’expansion nordique de la répartition du dindon sauvage en réponse aux changements climatiques.
Resumo:
The period between offspring birth and recruitment into the breeding population is considered one of the least understood components of animal life histories. Yet, examining this period is essential for studies of parental care, dispersal, demography, and life histories. Studies of the pre-reproductive period are particularly few in tropical regions, where the organization of life histories are predicted to differ compared to northern hemisphere species. For my dissertation I used radio-telemetry, mark-resighting, and field observations to study the pre-reproductive period in a Neotropical bird, the western slaty-antshrike (Thamnophilus atrinucha), in Panama. First, I found that parental care after offspring left the nest (the post-fledging period) was greater than care during the nestling period. Prolonged care resulted in a clear trade-off for parents as they did not nest again until fledglings from the first brood were independent. Parents fed offspring for a prolonged duration during the post-fledging period and higher post-fledging survival was observed compared to many northern hemisphere species. Second, I observed that offspring that remained with parents for longer periods on the natal territory had higher survival both while on the natal territory and after dispersal compared to those dispersing earlier. Parental aggression towards offspring increased with offspring age and offspring dispersed earlier when parents renested. Contrary to other family living species, only a small proportion of antshrike offspring remained on the natal territory until the following year and all dispersed to float. Floating is when juveniles wander within other breeding pairs’ territories. These results suggest that the benefits of delayed dispersal declined with offspring age and with renesting by parents. Third, I observed that survival during the dependent period and first year was greater in slaty antshrikes compared to that of northern hemisphere species. Pre-reproductive survival relative to adult survival was equal or greater than that observed in northern hemisphere species. The date offspring left the nest, mass, and age at dispersal influenced offspring survival, whereas offspring sex and year did not. Relatively high survival during the pre-reproductive period coupled with comparatively low annual productivity clarifies how many tropical species achieve replacement. High juvenile survival appears to obtain from extended post-fledging parental care, delayed dispersal, low costs of dispersal, and a less seasonal environment. Lastly, I experimentally manipulated begging at the nest to examine changes in parental behavior. Under elevated begging, parents increased provisioning rates and reduced the time between arrival to the nest and feeding of nestlings, potentially to reduce begging sounds. Furthermore, parents switched to preferentially feed the closest offspring during the begging treatment. This suggests parents either allowed sibling competition to influence feeding decisions, or feeding the closer nestling increased the efficiency of provisioning. In summary, I found that slaty antshrikes have delayed age at reproduction, higher post-fledging and first year survival, extended post-fledging parental care, equal or greater pre-reproductive survival relative to adult survival, and delayed dispersal compared to many northern hemisphere passerines. These results suggest that this tropical species has a strategy of high investment into few offspring. Furthermore, reproductive effort is equal or greater at least in slaty antshrikes compared to northern hemisphere species, suggesting that the latitudinal gradient in clutch size is not explained by a gradient in reproductive effort.
Resumo:
We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate.We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity.
Resumo:
Global biodiversity patterns are often driven by diff erent environmental variables at diff erent scales. However, it is still controversial whether there are general trends, whether similar processes are responsible for similar patterns, and/or whether confounding eff ects such as sampling bias can produce misleading results. Our aim is twofold: 1) assessing the global correlates of diversity in a group of microscopic animals little analysed so far, and 2) inferring the infl uence of sampling intensity on biodiversity analyses. As a case study, we choose rotifers, because of their high potential for dispersal across the globe. We assembled and analysed a new worldwide dataset of records of monogonont rotifers, a group of microscopic aquatic animals, from 1960 to 1992. Using spatially explicit models, we assessed whether the diversity patterns conformed to those commonly obtained for larger organisms, and whether they still held true after controlling for sampling intensity, variations in area, and spatial structure in the data. Our results are in part analogous to those commonly obtained for macroorganisms (habitat heterogeneity and precipitation emerge as the main global correlates), but show some divergence (potential absence of a latitudinal gradient and of a large-scale correlation with human population). Moreover, the eff ect of sampling eff ort is remarkable, accounting for 50% of the variability; this strong eff ect may mask other patterns such as latitudinal gradients. Our study points out that sampling bias should be carefully considered when drawing conclusions from large-scale analyses, and calls for further faunistic work on microorganisms in all regions of the world to better understand the generality of the processes driving global patterns in biodiversity.
Resumo:
Mode of access: Internet.
Resumo:
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.