921 resultados para Landau parameter
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
Digital Image
Resumo:
The size effect on the lattice parameter of ionic KCl nanocrystals was studied systematically during mechanical milling of Pure KCl powder under vacuum. The results suggest anomalous lattice expansion, with the lattice parameter increasing from 6.278 angstrom at d = 6 mu m to 6.30307 angstrom at d = 85 mn. The defects generated during ball milling of KCl and surface stress are deemed to be responsible for this lattice parameter expansion. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Digital Image
Resumo:
A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.
Resumo:
Input-output stability of linear-distributed parameter systems of arbitrary order and type in the presence of a distributed controller is analyzed by extending the concept of dissipativeness, with certain modifications, to such systems. The approach is applicable to systems with homogeneous or homogenizable boundary conditions. It also helps in generating a Liapunov functional to assess asymptotic stability of the system.
Resumo:
A generalized Ginzburg-Landau approach is used to study the nonmonotonic temperature dependence of the upper critical field H c 2(T) in antiferromagnetic superconductors RE(Mo)6S8; RE = Dy, Tb, Gd. It is found that electrodynamic effects incorporated through screening and indirect coupling between the staggered magnetization M Q (T) and superconducting order parameter psgr cannot explain the observed nonmonotonicity. This suggests that the direct coupling between the two order parameters should be considered to understand the experimental results, a finding which is consistent with recent microscopic calculations.
Resumo:
In this paper, we solve the distributed parameter fixed point smoothing problem by formulating it as an extended linear filtering problem and show that these results coincide with those obtained in the literature using the forward innovations method.
Resumo:
Intrinsic viscosity data for polystyrene, poly(methyl methacrylate) and styrene-methyl methacrylate copolymer of azeotropic composition have been used to evaluate the excess interaction parameters at different temperatures in γ-butyrolactone and dimethylformamide. It is found that these values are positive and show a negligible increase with increase in temperature, indicating therefore that the hetero-contact interactions are not influenced by temperature, contrary to the results obtained by Dondos and Benoit for the same copolymer system in p-xylene and iso-amyl acetate.
Resumo:
A non-dimensional parameter descriptive of the plowing nature of surfaces is proposed for the case of sliding between a soft and a relatively hard metallic pair. From a set of potential parameters which can be descriptive of the phenomenon, dimensionless groups are formulated and the influence of each one of them is analyzed. A non-dimensional parameter involving the root-mean square deviation (R-q) and the centroidal frequency (F-mean) deducted from the power-spectrum is found to have a high degree of correlation (as high as 0.93) with the coefficient of friction obtained in sliding experiments under lubricated condition.
Resumo:
In this work, we evaluate the benefits of using Grids with multiple batch systems to improve the performance of multi-component and parameter sweep parallel applications by reduction in queue waiting times. Using different job traces of different loads, job distributions and queue waiting times corresponding to three different queuing policies(FCFS, conservative and EASY backfilling), we conducted a large number of experiments using simulators of two important classes of applications. The first simulator models Community Climate System Model (CCSM), a prominent multi-component application and the second simulator models parameter sweep applications. We compare the performance of the applications when executed on multiple batch systems and on a single batch system for different system and application configurations. We show that there are a large number of configurations for which application execution using multiple batch systems can give improved performance over execution on a single system.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.