912 resultados para Land - Use and occupation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One folded col. map in pocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"October 1980."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"DOT-P-30-80-39"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern half of the parish of St. Catherine in Jamaica was selected as a test area to study, by means of remote sensing, the problems of soil erosion in a tropical environment. An initial study was carried out to determine whether eroded land within this environment could be successfully interpreted and mapped from the available 1: 25,000 scale aerial photographs. When satisfied that a sufficiently high percentage of the eroded land could be interpreted on the aerial photographs the main study was initiated. This involved interpreting the air photo cover of the study area for identifying and classifying land use and eroded land, and plotting the results on overlays on topographic base maps. These overlays were then composited with data on the soils and slopes of the study area. The areas of different soil type/slope/land use combinations were then measured, as was the area of eroded land for each of these combinations. This data was then analysed in two ways. The first way involved determining which of the combinations of soil type, slope and land use were most and least eroded and, on the basis of this, to draw up recommendations concerning future land use. The second analysis was aimed at determining which of the three factors, soil type, slope and land use, was most responsible for determining the rate of erosion. Although it was possible to show that slope was not very significant in determining the rate of erosion, it was much more difficult to separate the effects of land use and soil type. The results do, however, suggest that land use is more significant than soil type in determining the rate of erosion within the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use and transportation interaction has been a research topic for several decades. There have been efforts to identify impacts of transportation on land use from several different perspectives. One focus has been the role of transportation improvements in encouraging new land developments or relocation of activities due to improved accessibility. The impacts studied have included property values and increased development. Another focus has been on the changes in travel behavior due to better mobility and accessibility. Most studies to date have been conducted in metropolitan level, thus unable to account for interactions spatially and temporally at smaller geographic scales. ^ In this study, a framework for studying the temporal interactions between transportation and land use was proposed and applied to three selected corridor areas in Miami-Dade County, Florida. The framework consists of two parts: one is developing of temporal data and the other is applying time series analysis to this temporal data to identify their dynamic interactions. Temporal GIS databases were constructed and used to compile building permit data and transportation improvement projects. Two types of time series analysis approaches were utilized: univariate models and multivariate models. Time series analysis is designed to describe the dynamic consequences of time series by developing models and forecasting the future of the system based on historical trends. Model estimation results from the selected corridors were then compared. ^ It was found that the time series models predicted residential development better than commercial development. It was also found that results from three study corridors varied in terms of the magnitude of impacts, length of lags, significance of the variables, and the model structure. Long-run effect or cumulated impact of transportation improvement on land developments was also measured with time series techniques. The study offered evidence that congestion negatively impacted development and transportation investments encouraged land development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.