997 resultados para Lake Forest (Ill.)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Grouse shooting extraordinary.--Fly-fishing for white perch.--Goose shooting.--Perch fishing.--A tale of Winnepesaukee.--Horn pout fishing.--The fox we did not get.--Insect hunting in winter.--Lake trout fishing.--The naturalist in the White Mountains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Based upon earlier bibliographies compiled and freely made available by Scott S. Pauley, A.J. Riker, P.W. Robbins, and Stephen H. Spurr."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A travel article about food and landscape in Alberta. IN THE remote islands off Canada's east coast, I was given an old rule of survival: If you get lost in the forest, follow the bear tracks and eat what the bears eat, except skunk cabbage. There was no second rule for what to do about the bear, should he also appear. No matter. "Do this and you'll live," it says, "just as we did in the past."...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From left to right: Ursula, Walter, Hal, Kurt, Fritz, and Elizabeth Gottschalk; the lake is probably the Titisee near the Swiss border in the Black Forest, Germany

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From left to right: Ursula, Walter, Hal, Kurt, Fritz, and Elizabeth Gottschalk; the lake is probably the Titisee near the Swiss border in the Black Forest, Germany

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From left to right: Ursula, Walter, Hal, Kurt, Fritz, and Elizabeth Gottschalk; the lake is probably the Titisee near the Swiss border in the Black Forest, Germany

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From left to right: Ursula, Walter, Hal, Kurt, Fritz, and Elizabeth Gottschalk; the lake is probably the Titisee near the Swiss border in the Black Forest, Germany

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change contributes directly or indirectly to changes in species distributions, and there is very high confidence that recent climate warming is already affecting ecosystems. The Arctic has already experienced the greatest regional warming in recent decades, and the trend is continuing. However, studies on the northern ecosystems are scarce compared to more southerly regions. Better understanding of the past and present environmental change is needed to be able to forecast the future. Multivariate methods were used to explore the distributional patterns of chironomids in 50 shallow (≤ 10m) lakes in relation to 24 variables determined in northern Fennoscandia at the ecotonal area from the boreal forest in the south to the orohemiarctic zone in the north. Highest taxon richness was noted at middle elevations around 400 m a.s.l. Significantly lower values were observed from cold lakes situated in the tundra zone. Lake water alkalinity had the strongest positive correlation with the taxon richness. Many taxa had preference for lakes either on tundra area or forested area. The variation in the chironomid abundance data was best correlated with sediment organic content (LOI), lake water total organic carbon content, pH and air temperature, with LOI being the strongest variable. Three major lake groups were separated on the basis of their chironomid assemblages: (i) small and shallow organic-rich lakes, (ii) large and base-rich lakes, and (iii) cold and clear oligotrophic tundra lakes. Environmental variables best discriminating the lake groups were LOI, taxon richness, and Mg. When repeated, this kind of an approach could be useful and efficient in monitoring the effects of global change on species ranges. Many species of fast spreading insects, including chironomids, show a remarkable ability to track environmental changes. Based on this ability, past environmental conditions have been reconstructed using their chitinous remains in the lake sediment profiles. In order to study the Holocene environmental history of subarctic aquatic systems, and quantitatively reconstruct the past temperatures at or near the treeline, long sediment cores covering the last 10000 years (the Holocene) were collected from three lakes. Lower temperature values than expected based on the presence of pine in the catchment during the mid-Holocene were reconstructed from a lake with great water volume and depth. The lake provided thermal refuge for profundal, cold adapted taxa during the warm period. In a shallow lake, the decrease in the reconstructed temperatures during the late Holocene may reflect the indirect response of the midges to climate change through, e.g., pH change. The results from three lakes indicated that the response of chironomids to climate have been more or less indirect. However, concurrent shifts in assemblages of chironomids and vegetation in two lakes during the Holocene time period indicated that the midges together with the terrestrial vegetation had responded to the same ultimate cause, which most likely was the Holocene climate change. This was also supported by the similarity in the long-term trends in faunal succession for the chironomid assemblages in several lakes in the area. In northern Finnish Lapland the distribution of chironomids were significantly correlated with physical and limnological factors that are most likely to change as a result of future climate change. The indirect and individualistic response of aquatic systems, as reconstructed using the chironomid assemblages, to the climate change in the past suggests that in the future, the lake ecosystems in the north do not respond in one predictable way to the global climate change. Lakes in the north may respond to global climate change in various ways that are dependent on the initial characters of the catchment area and the lake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high density of meres and mosses in the Delamere area comes from numerous moraine-hollows formed after the melting of stranded ice-blocks following last glaciation. The main vegetation is of conifers along with some deciduous species and the area was designated as a National Forest Park in 1987. It has been managed since the beginning of the 19th century and is a popular tourist area with walking, orienteering, cycling and educational activities. In recent years this forest park has been attracting over half a million people per year. This paper studies the limnology of different aquatic habitats in the Delamere Forest area in order to give some insight into the waters of a coniferous, temperate forest area, which has so far been largely unexplored. The authors assume therefore, thought that despite apparent large variability in origin, age, surface area, morphometry, catchment size and hydraulic regime, the waters of Delamere Forest might share some revealing chemical and biological features. Seven water-bodies in the Delamere Forest Park area, namely, Black Lake, Blakemere Moss, Delamere Lake, Delamere Quarry, Hatchmere, Windyhowe Farm Spring and Fir Brook were sampled, their water chemistry and dissolved organic carbon and the occurrence of phytoplankton and zooplankton species examined. In a final chapter the authors analyse their findings for patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies by the Freshwater Biological Association over the last 25 years have supplied data relevant to the levels of acidity in local soils and water before the onset of industrial pollution and current interest in acid rain. This article reviews published analysis from cores of lake sediments, in or near the catchment of the River Duddon. Electron spin resonance spectra of humic acids and iodine values confirm evidence from pollen analysis for a history of progressive acidification of the source material of lake sediments since before 5000 radiocarbon years, in upland catchments of the Lake District. Processes involved included: removal of basic ions from soils by rainfall, the effects of which were intensified by removal by man of deciduous forest; acidification of soils and waters by decomposition products of Calluna and further acidification of waters by Sphagnum species which colonized habitats where drainage became impeded by paludification processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.