982 resultados para LITHIUM 7
Resumo:
Pore fluid and sediment Li concentrations and isotopic ratios provide important insights on the hydrology, sediment contribution to the arc volcanoes and fluid-sediment reactions at the dominantly non-accretionary Costa Rica subduction zone. Ocean Drilling Program Site 1039 in the trench axis provides a reference section of 400 m of the incoming sediments, and Site 1040, situated arcward from the trench, consists of a deformed sedimentary wedge and apron sediments, the décollement, and the partially dewatered underthrust sediment section. At the reference site, pore fluids show important isotopic variations (delta6Li=-21.7 to -37.8 per mil), reflecting the interplay of in situ alteration of volcanic material and ion exchange with clay minerals. In the basal section, a reversal of Li concentration and delta6Li toward seawater values is observed, providing supporting evidence for a lateral seawater flow system in the upper oceanic basement underlying this sediment section. At Site 1040, pore fluid of the lower deformed wedge sediments and within the décollement is enriched in Li and the isotopic compositions are relatively light, suggesting infiltration of a deep-seated fluid. The delta6Li value of -22 per mil of this Li-enriched fluid (261 µM), when compared with the delta6Li value of the subducted sediment section (-11 per mil), suggests that the deep source fluid originates from mineral fluid dehydration and transformation reactions at temperatures of 100 to 150°C, consistent with the temperature range of the up-dip seismogenic zone and of transformation of smectite to illite. The distribution of Li and its isotopes in the underthrust section are similar to those at the reference site, indicating near complete subduction of the incoming sediments and that early dewatering of the underthrust sediments occurs predominantly by lateral flow into the ocean. The hemipelagic clay-rich sediment section of the subducting plate carries most of the Li into this subduction zone, and the pelagic diatomaceous and nannofossil calcareous oozes contain little Li. The Li isotopes of both the clay-rich hemipelagic sediments and of the pelagic oozes are, however, similar, with delta6Li values of -9 to -12 per mil. The observations that (1) the delta6Li values of the underthrust sediments are distinctly lower than that of the mantle, and (2) the lavas of the Costa Rican volcanoes are enriched in Li and 7Li, provide an approximation of the contribution of the subducted sediments to the arc volcanoes. A first order mass balance calculation suggests that approximately half of the Li flux delivered by subducted sediments and altered oceanic crust into the Middle American Trench is recycled to the Costa Rican arc and at most a quarter of sedimentary Li is returned into the ocean through thrust faults, primarily the décollement thrust.
Resumo:
Lithium isotopic compositions of hydrothermally altered sediments of Deep Sea Drilling Project (DSDP) site 477/477A, as well as high temperature vent fluids of the Guaymas Basin, have been determined to gain an understanding of lithium exchange during fluid-sediment interaction at this sediment-covered spreading center. Unaltered turbidite of the basin has a d6Li value of -10%, 5-7% heavier than fresh oceanic basalts. Contact metamorphism induced by a shallow sill intrusion results in a decrease of the lithium content of the adjacent sediments and a lighter isotopic value (-8%). Below the sill, sediments altered by a deep-seated hydrothermal system show strong depletions in lithium, while lithium isotopic compositions vary greatly, ranging from -11 to +1%. The shift to lighter composition is the result of preferential retention of the lighter isotope in recrystallized phases after destruction of the primary minerals. The complexity of the isotope profile is attributed to inhomogeneity in mineral composition, the tortuous pathway of fluids and the temperature effect on isotopic fractionation. The range of lithium concentration and d6Li values for the vent fluids sampled in 1982 and 1985 overlaps with that of the sediment-free mid-ocean ridge systems. The lack of a distinct expression of sediment input is explained in terms of a flow-through system with continuous water recharge. The observations on the natural system agree well with the results of laboratory hydrothermal experiments. The experimental study demonstrates the importance of temperature, pressure, water/rock ratio, substrate composition and reaction time on the lithium isotopic composition of the reacted fluid. High temperature authigenic phases do not seem to constitute an important sink for lithium and sediments of a hydrothermal system such as Guaymas are a source of lithium to the ocean. The ready mobility of lithium in the sediment under elevated temperature and pressure conditions also has important implications for lithium cycling in subduction zones.
Resumo:
Data on lithium, rubidium and cesium concentrations in waters of open seas and oceans are summarized. Average amounts of these elements in the World Ocean inferred from published data and those obtained by the author are as follows: Li - 0.18 mg/l, Rb - 0.12 mg/l and Cs - 0.004 mg/l. Rare alkaline elements in the oceans and open seas are distributed (like sodium and potassium) in accordance with salinity. The ability of lithium to become a constituent of clay minerals accounts for its relatively low concentration in sea water as compared with that of sodium and potassium. Compared to rubidium and cesium that have high absorption energy and low hydration energy, lithium relatively enriches sea water. Residence times of these elements in the ocean are: Na - 120 My, Li - 2.7 My, Rb - 2.3 My and Cs - 0.3 My.
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."
Resumo:
A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.
Resumo:
In this letter, we demonstrate an optically pumped semiconductor disk laser frequency doubled with a periodically poled lithium tantalate crystal. Crystals with various lengths were tested for intracavity frequency conversion. The semiconductor disk laser exploited GaInNAs-based active region with GaAsAlAs distributed Bragg mirror to produce emission at 1.2- μm wavelength. The frequency doubled power up to 760 mW at the wavelength of 610 nm was achieved with a 2-mm-long crystal. © 2010 IEEE.
Resumo:
Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^