151 resultados para Kok-saghyz.
Resumo:
The first size-resolved airborne measurements of dust fluxes and the first dust flux measurements from the central Sahara are presented and compared with a parameterization by Kok (2011a). High-frequency measurements of dust size distribution were obtained from 0.16 to 300 µm diameter, and eddy covariance fluxes were derived. This is more than an order of magnitude larger size range than previous flux estimates. Links to surface emission are provided by analysis of particle drift velocities. Number flux is described by a −2 power law between 1 and 144 µm diameter, significantly larger than the 12 µm upper limit suggested by Kok (2011a). For small particles, the deviation from a power law varies with terrain type and the large size cutoff is correlated with atmospheric vertical turbulent kinetic energy, suggesting control by vertical transport rather than emission processes. The measured mass flux mode is in the range 30–100 µm. The turbulent scales important for dust flux are from 0.1 km to 1–10 km. The upper scale increases during the morning as boundary layer depth and eddy size increase. All locations where large dust fluxes were measured had large topographical variations. These features are often linked with highly erodible surface features, such as wadis or dunes. We also hypothesize that upslope flow and flow separation over such features enhance the dust flux by transporting large particles out of the saltation layer. The tendency to locate surface flux measurements in open, flat terrain means these favored dust sources have been neglected in previous studies.
Resumo:
Objective: To investigate whether submicroscopic copy number variants (CNVs) on the X chromosome can be identified in women with primary ovarian insufficiency (POI), defined as spontaneous secondary amenorrhea before 40 years of age accompanied by follicle-stimulating hormone levels above 40 IU/L on at least two occasions. Design: Analysis of intensity data of single nucleotide polymorphism (SNP) probes generated by genomewide Illumina 370k CNV BeadChips, followed by the validation of identified loci using a custom designed ultra-high-density comparative genomic hybridization array containing 48,325 probes evenly distributed over the X chromosome. Setting: Multicenter genetic cohort study in the Netherlands. Patient(s): 108 Dutch Caucasian women with POI, 97 of whom passed quality control, who had a normal karyogram and absent fragile X premutation, and 235 healthy Dutch Caucasian women as controls. Intervention(s): None. Main Outcome Measure(s): Amount and locus of X chromosomal microdeletions or duplications. Result(s): Intensity differences between SNP probes identify microdeletions and duplications. The initial analysis identified an overrepresentation of deletions in POI patients. Moreover, CNVs in two genes on the Xq21.3 locus (i.e., PCDH11X and TGIF2LX) were statistically significantly associated with the POI phenotype. Mean size of identified CNVs was 262 kb. However, in the validation study the identified putative Xq21.3 deletions samples did not show deviations in intensities in consecutive probes. Conclusion(s): X chromosomal submicroscopic CNVs do not play a major role in Caucasian POI patients. We provide guidelines on how submicroscopic cytogenetic POI research should be conducted. (Fertil Steril (R) 2011;95:1584-8. (C) 2011 by American Society for Reproductive Medicine.)
Resumo:
Samples from 30 deaf probands exhibiting features suggestive of syndromic mitochondrial deafness or from families with maternal transmission of deafness were selected for investigation of mutations in the mitochondrial genes MT-RNR1 and MT-TS1. Patients with mutation m. 1555A>G had been previously excluded from this sample. In the MT-RNR1 gene, five probands presented the m. 827A>G sequence variant, of uncertain pathogenicity. This change was also detected in 66 subjects of an unaffected control sample of 306 Brazilian individuals from various ethnic backgrounds. Given its high frequency, we consider it unlikely to have a pathogenic role on hereditary deafness. As to the MT-TS1 gene, one proband presented the previously known pathogenic m. 7472insC mutation and three probands presented a novel variant, m. 7462C>T, which was absent from the same control sample of 306 individuals. Because of its absence in control samples and association with a family history of hearing impairment, we suggest it might be a novel pathogenic mutation.
Resumo:
Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (similar to 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
Resumo:
The cause of hearing impairment has not been elucidated in a large proportion of patients. We screened by 1-Mb array-based comparative genomic hybridization (aCGH) 29 individuals with syndromic hearing impairment whose clinical features were not typical of known disorders. Rare chromosomal copy number changes were detected in eight patients, four de novo imbalances and four inherited from a normal parent. The de novo alterations define candidate chromosome segments likely to harbor dosage-sensitive genes related to hearing impairment, namely 1q23.3-q25.2, 2q22q23, 6p25.3 and 11q13.2-q13.4. The rare imbalances also present in normal parents might be casually associated with hearing impairment, but its role as a predisposition gene remains a possibility. Our results show that syndromic deafness is frequently associated with chromosome microimbalances (14-27%), and the use of aCGH for defining disease etiology is recommended.
Resumo:
The presence of the, 4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer`s disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon 4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
SPOAN is an autosomal recessive neurodegenerative disorder which was recently characterized by our group in a large inbred Brazilian family with 25 affected individuals. This condition is clinically defined by: 1. congenital optic atrophy; 2. progressive spastic paraplegia with onset in infancy; and 3. progressive motor and sensory axonal neuropathy. Overall, we are now aware of 68 SPOAN patients (45 females and 23 males, with age ranging from 5 to 72 years), 44 of which are presented here for the first time. They were all born in the same geographic micro region. Those 68 patients belong to 43 sibships, 40 of which exhibit parental consanguinity. Sixty-one patients were fully clinically evaluated and 64 were included in the genetic investigation. All molecularly studied patients are homozygotes for D11S1889 at 11q13. This enabled us to reduce the critical region for the SPOAN gene from 4.8 to 2.3 Mb, with a maximum two point lod score of 33.2 (with marker D11S987) and of 27.0 (with marker D11S1889). Three genes located in this newly defined critical region were sequenced, but no pathogenic mutation was detected. The gene responsible for SPOAN remains elusive.
Resumo:
Autosomal recessive spastic paraplegia with thinning of corpus callosum (ARHSP-TCC) is a complex form of HSP initially described in Japan but subsequently reported to have a worldwide distribution with a particular high frequency in multiple families from the Mediterranean basin. We recently showed that ARHSP-TCC is commonly associated with mutations in SPG11/KIAA1840 on chromosome 15q. We have now screened a collection of new patients mainly originating from Italy and Brazil, in order to further ascertain the spectrum of mutations in SPG11, enlarge the ethnic origin of SPG11 patients, determine the relative frequency at the level of single Countries (i.e., Italy), and establish whether there is one or more common mutation. In 25 index cases we identified 32 mutations; 22 are novel, including 9 nonsense, 3 small deletions, 4 insertions, 1 in/del, 1 small duplication, 1 missense, 2 splice-site, and for the first time a large genomic rearrangement. This brings the total number of SPG11 mutated patients in the SPATAX collection to 111 cases in 44 families and in 17 isolated cases, from 16 Countries, all assessed using homogeneous clinical criteria. While expanding the spectrum of mutations in SPG11, this larger series also corroborated the notion that even within apparently homogeneous population a molecular diagnosis cannot be achieved without full gene sequencing. (C) 2008 Wiley-Liss, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The known diversity of dart-poison frog species has grown from 70 in the 1960s to 247 at present, with no sign that the discovery of new species will wane in the foreseeable future. Although this growth in knowledge of the diversity of this group has been accompanied by detailed investigations of many aspects of the biology of dendrobatids, their phylogenetic relationships remain poorly understood. This study was designed to test hypotheses of dendrobatid diversification by combining new and prior genotypic and phenotypic evidence in a total evidence analysis. DNA sequences were sampled for five mitochondrial and six nuclear loci (approximately 6,100 base pairs [bp]; x=3,740 bp per terminal; total dataset composed of approximately 1.55 million bp), and 174 phenotypic characters were scored from adult and larval morphology, alkaloid profiles, and behavior. These data were combined with relevant published DNA sequences. Ingroup sampling targeted several previously unsampled species, including Aromobates nocturnus, which was hypothesized previously to be the sister of all other dendrobatids. Undescribed and problematic species were sampled from multiple localities when possible. The final dataset consisted of 414 terminals: 367 ingroup terminals of 156 species and 47 outgroup terminals of 46 species. Direct optimization parsimony analysis of the equally weighted evidence resulted in 25,872 optimal trees. Forty nodes collapse in the strict consensus, with all conflict restricted to conspecific terminals. Dendrobatids were recovered as monophyletic, and their sister group consisted of Crossodactylus, Hylodes, and Megaelosia, recognized herein as Hylodidae. Among outgroup taxa, Centrolenidae was found to be the sister group of all athesphatanurans except Hylidae, Leptodactyidae was polyphyletic, Thoropa was nested within Cycloramphidae, and Ceratophryinae was paraphyletic with respect to Telmatobiinae. Among dendrobatids, the monophyly and content of Mannophryne and Phyllobates were corroborated. Aromobates nocturnus and Colostethus saltuensis were found to be nested within Nephelobates, and Minyobates was paraphyletic and nested within Dendrobates. Colostethus was shown to be rampantly nonmonophyletic, with most species falling into two unrelated cis- and trans-Andean clades. A morphologically and behaviorally diverse clade of median lingual process-possessing species was discovered. In light of these findings and the growth in knowledge of the diversity of this large clade over the past 40 years, we propose a new, monophyletic taxonomy for dendrobatids, recognizing the inclusive clade as a superfamily (Dendrobatoidea) composed of two families (one of which is new), six subfamilies (three new), and 16 genera (four new). Although poisonous frogs did not form a monophyletic group, the three poisonous lineages are all confined to the revised family Dendrobatidae, in keeping with the traditional application of this name. We also propose changes to achieve a monophyletic higher-level taxonomy for the athesphatanuran outgroup taxa. Analysis of character evolution revealed multiple origins of phytotelm-breeding, parental provisioning of nutritive oocytes for larval consumption (larval oophagy), and endotrophy. Available evidence indicates that transport of tadpoles on the dorsum of parent nurse frogs-a dendrobatid synapomorphy-is carried out primitively by male nurse frogs, with three independent origins of female transport and five independent origins of biparental transport. Reproductive amplexus is optimally explained as having been lost in the most recent common ancestor of Dendrobatoidea, with cephalic amplexus arising independently three times. © American Museum of Natural History 2006.
Resumo:
Spiny-backed tree frogs of the genus Osteocephalus are conspicuous components of the tropical wet forests of the Amazon and the Guiana Shield. Here, we revise the phylogenetic relationships of Osteocephalus and its sister group Tepuihyla, using up to 6134 bp of DNA sequences of nine mitochondrial and one nuclear gene for 338 specimens from eight countries and 218 localities, representing 89% of the 28 currently recognized nominal species. Our phylogenetic analyses reveal (i) the paraphyly of Osteocephalus with respect to Tepuihyla, (ii) the placement of 'Hyla' warreni as sister to Tepuihyla, (iii) the non-monophyly of several currently recognized species within Osteocephalus and (iv) the presence of low (<1%) and overlapping genetic distances among phenotypically well-characterized nominal species (e.g. O. taurinus and O. oophagus) for the 16S gene fragment used in amphibian DNA barcoding. We propose a new taxonomy, securing the monophyly of Osteocephalus and Tepuihyla by rearranging and redefining the content of both genera and also erect a new genus for the sister group of Osteocephalus. The colouration of newly metamorphosed individuals is proposed as a morphological synapomorphy for Osteocephalus. We recognize and define five monophyletic species groups within Osteocephalus, synonymize three species of Osteocephalus (O. germani, O. phasmatus and O. vilmae) and three species of Tepuihyla (T. celsae, T. galani and T. talbergae) and reallocate three species (Hyla helenae to Osteocephalus, O. exophthalmus to Tepuihyla and O. pearsoni to Dryaderces gen. n.). Furthermore, we flag nine putative new species (an increase to 138% of the current diversity). We conclude that species numbers are largely underestimated, with most hidden diversity centred on widespread and polymorphic nominal species. The evolutionary origin of breeding strategies within Osteocephalus is discussed in the light of this new phylogenetic hypothesis, and a novel type of amplexus (gular amplexus) is described. © 2013 The Norwegian Academy of Science and Letters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The aim of this study was to identify communities at high risk of transmitting recessive genetic disorders by measuring levels of endogamy and offspring's rate of disabilities. Methods: In a house-to-house population based-survey in the state of Paraiba, 20,462 couples were interviewed regarding kinship relation, number of siblings and offspring affected by mental or physical disabilities. Results: The rate of consanguineous unions in the communities ranged from 6.0% to 41.14%, showing an average value of 20.19% +/- 9.13%. The overall average inbreeding coefficient (F) was 0.00602 +/- 0.00253, ranging from 0.00134 to 0.01182. Communities situated on the backlands had an increased average value of F compared to those closer to the seashore (P = 0.024). The average rate of disabled offspring varied from 2.96% +/- 0.68% for unrelated unions to 10.44% +/- 16.86% for related couples at the level of double first cousins or uncleniece. The Spearman correlation coefficient between the overall rate of disabled offspring from all couples together and F was 0.510 (P < 0.01). Conclusion: Inbreeding increases the risk of disability which is unevenly distributed, varying considerably even in neighboring communities with similar Human Development Index and population density. Higher inbreeding communities are mostly located on the more economically underdeveloped backlands than on the coastal region. The identification of communities at high risk for genetic disorders could serve as basis for the establishment of Community Genetics programs. Am. J. Hum. Biol., 2012. (C) 2012 Wiley Periodicals, Inc.