900 resultados para Knowledge representation (Information theory)
Resumo:
Due to the increasing amount of data, knowledge aggregation, representation and reasoning are highly important for companies. In this paper, knowledge aggregation is presented as the first step. In the sequel, successful knowledge representation, for instance through graphs, enables knowledge-based reasoning. There exist various forms of knowledge representation through graphs; some of which allow to handle uncertainty and imprecision by invoking the technology of fuzzy sets. The paper provides an overview of different types of graphs stressing their relationships and their essential features.
Resumo:
A molecular model of poorly understood hydrophobic effects is heuristically developed using the methods of information theory. Because primitive hydrophobic effects can be tied to the probability of observing a molecular-sized cavity in the solvent, the probability distribution of the number of solvent centers in a cavity volume is modeled on the basis of the two moments available from the density and radial distribution of oxygen atoms in liquid water. The modeled distribution then yields the probability that no solvent centers are found in the cavity volume. This model is shown to account quantitatively for the central hydrophobic phenomena of cavity formation and association of inert gas solutes. The connection of information theory to statistical thermodynamics provides a basis for clarification of hydrophobic effects. The simplicity and flexibility of the approach suggest that it should permit applications to conformational equilibria of nonpolar solutes and hydrophobic residues in biopolymers.
Resumo:
We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts.
Resumo:
In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Resumo:
Includes bibliographical references and index.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In the context of a hostile funding environment, universities are increasingly asked to justify their output in narrowly defined economic terms, and this can be difficult in Humanities or Arts faculties where productivity is rarely reducible to a simple financial indicator. This can lead to a number of immediate consequences that I have no need to rehearse here, but can also result in some interesting tensions within the academic community itself. First is that which has become known as the ‘Science Wars’: the increasingly acrimonious exchanges between scientists and scientific academics and cultural critics or theorists about who has the right to describe the world. Much has already been said—and much remains to be said—about this issue, but it is not my intention to discuss it here. Rather, I will look at a second area of contestation: the incorporation of scientific theory into literary or cultural criticism. Much of this work comes from a genuine commitment to interdisciplinarity, and an appreciation of insights that a fresh perspective can bring to a familiar object. However, some can be seen as cynical attempts to lend literary studies the sort of empirical legitimacy of the sciences. In particular, I want to look at a number of critics who have applied information theory to the literary work. In this paper, I will examine several instances of this sort of criticism, and then, through an analysis of a novel by American author Richard Powers, Three Farmers on Their Way to a Dance, show how this sort of criticism merely reduces the meaningful analysis of a complex literary text.
Resumo:
Ontologies have become the knowledge representation medium of choice in recent years for a range of computer science specialities including the Semantic Web, Agents, and Bio-informatics. There has been a great deal of research and development in this area combined with hype and reaction. This special issue is concerned with the limitations of ontologies and how these can be addressed, together with a consideration of how we can circumvent or go beyond these constraints. The introduction places the discussion in context and presents the papers included in this issue.
Resumo:
Recently, we have seen an explosion of interest in ontologies as artifacts to represent human knowledge and as critical components in knowledge management, the semantic Web, business-to-business applications, and several other application areas. Various research communities commonly assume that ontologies are the appropriate modeling structure for representing knowledge. However, little discussion has occurred regarding the actual range of knowledge an ontology can successfully represent.