949 resultados para Ito stochastic differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we give sufficient condition in the form of integral inequalities to establish the oscillatory nature of non linear homogeneous differential equations of the form where r, q, p, f and g are given data. We do this by separating the two cases f is monotonous and non monotonous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic volatility models are of fundamental importance to the pricing of derivatives. One of the most commonly used models of stochastic volatility is the Heston Model in which the price and volatility of an asset evolve as a pair of coupled stochastic differential equations. The computation of asset prices and volatilities involves the simulation of many sample trajectories with conditioning. The problem is treated using the method of particle filtering. While the simulation of a shower of particles is computationally expensive, each particle behaves independently making such simulations ideal for massively parallel heterogeneous computing platforms. In this paper, we present our portable Opencl implementation of the Heston model and discuss its performance and efficiency characteristics on a range of architectures including Intel cpus, Nvidia gpus, and Intel Many-Integrated-Core (mic) accelerators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Trotter product formula is established for unitary quantum stochastic processes governed by quantum stochastic differential equations with constant bounded coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we give a generalized predictor-corrector algorithm for solving ordinary differential equations with specified initial values. The method uses multiple correction steps which can be carried out in parallel with a prediction step. The proposed method gives a larger stability interval compared to the existing parallel predictor-corrector methods. A method has been suggested to implement the algorithm in multiple processor systems with efficient utilization of all the processors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backlund transformations relating the solutions of linear PDE with variable coefficients to those of PDE with constant coefficients are found, generalizing the study of Varley and Seymour [2]. Auto-Backlund transformations are also determined. To facilitate the generation of new solutions via Backlund transformation, explicit solutions of both classes of the PDE just mentioned are found using invariance properties of these equations and other methods. Some of these solutions are new.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simplified analysis is employed to handle a class of singular integro-differential equations for their solutions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach based on occupation measures is introduced for studying stochastic differential games. For two-person zero-sum games, the existence of values and optimal strategies for both players is established for various payoff criteria. ForN-person games, the existence of equilibria in Markov strategies is established for various cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several ''extraordinary'' differential equations are considered for their solutions via the decomposition method of Adomian. Verifications are made with the solutions obtained by other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study small perturbations of three linear Delay Differential Equations (DDEs) close to Hopf bifurcation points. In analytical treatments of such equations, many authors recommend a center manifold reduction as a first step. We demonstrate that the method of multiple scales, on simply discarding the infinitely many exponentially decaying components of the complementary solutions obtained at each stage of the approximation, can bypass the explicit center manifold calculation. Analytical approximations obtained for the DDEs studied closely match numerical solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.