986 resultados para Inverse solution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Article is devoted to design of optimum electromagnets for magnetic levitation of transport systems. The method of electromagnets design based on the inverse problem solution of electrical equipment is offered. The method differs from known by introducing a stage of minimization the target functions providing the stated levitation force and magnetic induction in a gap, and also the mass of an electromagnet. Initial values of parameters are received, using approximate formulas of the theory of electric devices and electrical equipment. The example of realization of a method is given. The received results show its high efficiency at design. It is practical to use the offered method and the computer program realizing it as a part of system of the automated design of electric equipment for transport with a magnetic levitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calculating the potentials on the heart’s epicardial surface from the body surface potentials constitutes one form of inverse problems in electrocardiography (ECG). Since these problems are ill-posed, one approach is to use zero-order Tikhonov regularization, where the squared norms of both the residual and the solution are minimized, with a relative weight determined by the regularization parameter. In this paper, we used three different methods to choose the regularization parameter in the inverse solutions of ECG. The three methods include the L-curve, the generalized cross validation (GCV) and the discrepancy principle (DP). Among them, the GCV method has received less attention in solutions to ECG inverse problems than the other methods. Since the DP approach needs knowledge of norm of noises, we used a model function to estimate the noise. The performance of various methods was compared using a concentric sphere model and a real geometry heart-torso model with a distribution of current dipoles placed inside the heart model as the source. Gaussian measurement noises were added to the body surface potentials. The results show that the three methods all produce good inverse solutions with little noise; but, as the noise increases, the DP approach produces better results than the L-curve and GCV methods, particularly in the real geometry model. Both the GCV and L-curve methods perform well in low to medium noise situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green’s functions, and properties of these equations are shown in an L2-setting. An effective way of discretizing these boundary integral equations based on the Nystr¨om method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase inverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is more realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear combination of fundamental solutions to the heat equation. The implementation and analysis are more complicated in the present situation since one needs to deal with a nonlinear minimization problem to identify the free surface. Furthermore, the inverse problem is ill-posed since small errors in the input measured data can cause large deviations in the desired solution. Therefore, regularization needs to be incorporated in the objective function which is minimized in order to obtain a stable solution. Numerical results are presented and discussed. © 2014 IMACS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 30C40

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the global synchronisation of a stochastic version of coupled map lattices networks through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic network, each state receives only noisy measurement of its neighbours' states. For such networks we derive a generalised Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and inverse controller in the derivation of the stochastic optimal control law. The generalised Riccati solution is derived using the Lyapunov approach. A probabilistic approximation type algorithm is employed to estimate the conditional distributions of the state and inverse controller from historical data and quantifying model uncertainties. The theoretical derivation is complemented by its validation on a set of representative examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniqueness of a solution is investigated for some inverse source problems arising in linear parabolic equations. We prove new uniqueness results formulated in Theorems 3.1 and 3.2. We also show optimality of the conditions under which uniqueness holds by explicitly constructing counterexamples, that is by constructing more than one solution in the case when the conditions for uniqueness are violated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of the displacement and the space-dependent force acting on a vibrating structure from measured final or time-average displacement observation is thoroughly investigated. Several aspects related to the existence and uniqueness of a solution of the linear but ill-posed inverse force problems are highlighted. After that, in order to capture the solution a variational formulation is proposed and the gradient of the least-squares functional that is minimized is rigorously and explicitly derived. Numerical results obtained using the Landweber method and the conjugate gradient method are presented and discussed illustrating the convergence of the iterative procedures for exact input data. Furthermore, for noisy data the semi-convergence phenomenon appears, as expected, and stability is restored by stopping the iterations according to the discrepancy principle criterion once the residual becomes close to the amount of noise. The present investigation will be significant to researchers concerned with wave propagation and control of vibrating structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse heat conduction problems (IHCPs) appear in many important scientific and technological fields. Hence analysis, design, implementation and testing of inverse algorithms are also of great scientific and technological interest. The numerical simulation of 2-D and –D inverse (or even direct) problems involves a considerable amount of computation. Therefore, the investigation and exploitation of parallel properties of such algorithms are equally becoming very important. Domain decomposition (DD) methods are widely used to solve large scale engineering problems and to exploit their inherent ability for the solution of such problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with tensor completion for the solution of multidimensional inverse problems. We study the problem of reconstructing an approximately low rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, non-uniform sampling strategies, and parameter selection algorithms are developed. We derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property (RIP) based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by non-uniform sampling from a Parseval tight frame. We show how tensor completion can be used to solve multidimensional inverse problems arising in NMR relaxometry. Algorithms are developed for regularization parameter selection, including accelerated k-fold cross-validation and generalized cross-validation. These methods are validated on experimental and simulated data. We also derive condition number estimates for nonnegative least squares problems. Tensor recovery promises to significantly accelerate N-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments. Our methods could also be applied to other inverse problems arising in machine learning, image processing, signal processing, computer vision, and other fields.