986 resultados para Instrumental variable regression
Resumo:
My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.
The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.
The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading
due to misclassification of unemployment.
Resumo:
Peer effects in adolescent cannabis are difficult to estimate, due in part to the lack of appropriate data on behaviour and social ties. This paper exploits survey data that have many desirable properties and have not previously been used for this purpose. The data set, collected from teenagers in three annual waves from 2002-2004 contains longitudinal information about friendship networks within schools (N = 5,020). We exploit these data on network structure to estimate peer effects on adolescents from their nominated friends within school using two alternative approaches to identification. First, we present a cross-sectional instrumental variable (IV) estimate of peer effects that exploits network structure at the second degree, i.e. using information on friends of friends who are not themselves ego’s friends to instrument for the cannabis use of friends. Second, we present an individual fixed effects estimate of peer effects using the full longitudinal structure of the data. Both innovations allow a greater degree of control for correlated effects than is commonly the case in the substance-use peer effects literature, improving our chances of obtaining estimates of peer effects than can be plausibly interpreted as causal. Both estimates suggest positive peer effects of non-trivial magnitude, although the IV estimate is imprecise. Furthermore, when we specify identical models with behaviour and characteristics of randomly selected school peers in place of friends’, we find effectively zero effect from these ‘placebo’ peers, lending credence to our main estimates. We conclude that cross-sectional data can be used to estimate plausible positive peer effects on cannabis use where network structure information is available and appropriately exploited.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A mediator is a dependent variable, m (e.g., charisma), that is thought to channel the effect of an independent variable, x (e.g., receiving training or not), on another dependent variable (e.g., subordinate satisfaction), y. In experimental settings x is manipulated-subjects are randomized to treatment-to isolate the causal effect of x on other variables. If m is not or cannot be manipulated, which is often the case, its causal effect on other variables cannot be determined; thus, standard mediation tests cannot inform policy or practice. I will show how an econometric procedure, called instrumental-variable estimation, can examine mediation in such cases.
Resumo:
The purpose of this paper is to examine the role played by built heritages and cultural environments, alongside other locational factors, in explaining the growth of human capital in Sweden. We distinguish between urban, natural and cultural qualities as different sources of regional attractiveness and estimate their influence on the observed growth of individuals with at least three years of higher education during 2001–2010. Neighborhood-level data are used, and unobserved heterogeneity and spatial dependencies are modeled by employing random effects estimations and an instrumental variable approach. Our findings indicate that the local supply of built heritages and cultural environments explain a significant part of human capital growth in Sweden. Results suggest that these types of cultural heritages are important place-based resources with a potential to contribute to improved regional attractiveness and growth.
Resumo:
BACKGROUND: Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES: The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n ¼ 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n ¼ 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS: Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p ¼ 2.12 1014). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p ¼ 5.95 10211), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p ¼ 0.994), which was statistically different from the observational estimate (p ¼ 1.6 105 ). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS: Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
Resumo:
El presente documento analiza los determinantes del margen de intermediación para el sistema financiero colombiano entre 1989 y 2003. Bajo una estimación dinámica de los efectos generados por variables específicas de actividad, impuestos y estructura de mercado, se presenta un seguimiento del margen de intermediación financiero, para un período que presenta elementos de liberalización y crisis.
Resumo:
A partir de la dinámica evolutiva de la economía de las Tecnologías de la Información y las Comunicaciones y el establecimiento de estándares mínimos de velocidad en distintos contextos regulatorios a nivel mundial, en particular en Colombia, en el presente artículo se presentan diversas aproximaciones empíricas para evaluar los efectos reales que conlleva el establecimiento de definiciones de servicios de banda ancha en el mercado de Internet fijo. Con base en los datos disponibles para Colombia sobre los planes de servicios de Internet fijo ofrecidos durante el periodo 2006-2012, se estima para los segmentos residencial y corporativo el proceso de difusión logístico modificado y el modelo de interacción estratégica para identificar los impactos generados sobre la masificación del servicio a nivel municipal y sobre las decisiones estratégicas que adoptan los operadores, respectivamente. Respecto a los resultados, se encuentra, por una parte, que las dos medidas regulatorias establecidas en Colombia en 2008 y 2010 presentan efectos significativos y positivos sobre el desplazamiento y el crecimiento de los procesos de difusión a nivel municipal. Por otra parte, se observa sustituibilidad estratégica en las decisiones de oferta de velocidad de descarga por parte de los operadores corporativos mientras que, a partir del análisis de distanciamiento de la velocidad ofrecida respecto al estándar mínimo de banda ancha, se demuestra que los proveedores de servicios residenciales tienden a agrupar sus decisiones de velocidad alrededor de los niveles establecidos por regulación.
Resumo:
¿Cuáles son los efectos de la guerra sobre el comportamiento político? Colombia es un caso interesante en el que el conflicto y las elecciones coexisten y los grupos armados ilegales intencionalmente afectan los resultados electorales. Sin embargo, los grupos usan diferentes estrategias para alterar estos resultados. Este artículo argumenta que los efectos diferenciales de la violencia sobre los resultados electorales son el resultado de estrategias deliberadas de los grupos ilegales, que a su turno, son consecuencia de las condiciones militares que difieren entre ellos. Usando datos panel de las elecciones al Senado de 1994 a 2006 y una aproximación por variables instrumentales para resolver posibles problemas de endogenidad, este artículo muestra que la violencia guerrillera disminuye la participación electoral, mientras que la violencia paramilitar no tiene ningún efecto sobre la participación pero reduce la competencia electoral y beneficia a nuevos partidos no-tradicionales. Esto es consistente con la hipótesis de que la estrategia de la guerrilla es sabotear las elecciones, mientras que los paramiltares establecen alianzas con ciertos candidatos.
Resumo:
Considering different perspectives, the scope of this thesis is to investigate how to improve healthcare resources allocation and the provision efficiency for hip surgeries, a resource-intensive operation, among the most frequently performed on the elderly, with a trend in volume that is increasing in years due to population aging. Firstly, the effect of Time-To-Surgery (TTS) on mortality for hip fracture patients is investigated. The analysis attempts to account for TTS endogeneity due to the inability to fully control for variables affecting patient delay – e.g. patient severity. Exploiting an instrumental variable model, where being admitted on Friday or Saturday predicts longer TTS, findings show exogenous TTS does not have a significant effect on mortality. Thus suggesting surgeons prioritize patients effectively, neutralizing the adverse impact of longer TTS. Then, the volume-outcome relation for total hip replacement surgery is analyzed, seeking to account for selective referral, which may be present in elective surgery context, and induce reverse causality issue in the volume-outcome relation. The analysis employs a conditional choice model where patient travel distance from all regions' hospitals is used as a hospital choice predictor. Findings show the exogenous hospital volume significantly decreases adverse outcomes probability, especially in the short run. Finally, the change in public procurement design enforced in the Romagna LHA (Italy) is exploited to assess its impact on hip prostheses cost, surgeons' implant choice, and patient health outcomes. Hip prostheses are the major cost-driver of hip replacement surgeries, hence it is crucial to design the public tender such that implant prices are minimized, but cost-containment policies have to be weighted with patient well-being. Evidence shows that a cost reduction occurred without a significant surgeons’ choices impact. Positive or no effect of surgeons specialization is found on patients outcomes after the new procurement introduction.
Resumo:
It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features
Resumo:
The focus of the paper is the nonparametric estimation of an instrumental regression function P defined by conditional moment restrictions stemming from a structural econometric model : E[Y-P(Z)|W]=0 and involving endogenous variables Y and Z and instruments W. The function P is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.
Resumo:
It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.
Resumo:
Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^