995 resultados para In-Ceram Zirconia
Resumo:
Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.
Resumo:
The system in-Ceram Alumina, produced by VITA, consists in a technique of prepare of a substructure of ceramics to dental crowns. First burning is made in the alumina decanted by slip casting process under a stone die that reproduces the tooth prepared to receive a crown. In a second burning, alumina is infiltrated by vitreous system, giving to this set a high mechanic resistance. In this work, it s made a study of the composition of a new infiltrating material more used nowadays, giving to alumina desirable mechanics proprieties to its using like substructure of support to ceramic s crown used in the market today. The addition of Lanthanum oxide (frit A) and calcium oxide (frit B) was made in attempt to increase the viscosity of LZSA and to reduce fusion temperature. The frits were put over samples of alumina and took to the tubular oven to 1400ºC under vacuum for two groups (groups 1 and 2). For another two groups (groups 3 and 4) it was made a second infiltration, following the same parameters of the first. A fifth group was utilized like group of control where the samples of pure alumina were not submitted to any infiltrating process. Glasses manifested efficient both in quality and results of analysis of mechanic resistance, being perfectly compatible with oral environment in this technical requisite. The groups that made a second infiltration had he best results of fracture toughness, qualify the use in the oral cavity in this technical question. The average of results achieved for mechanic resistance to groups 1, 2, 3, 4 and 5 were respectively 98 MPa, 90 MPa, 144 MPa, 236 MPa and 23 MPa
Resumo:
Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties
Resumo:
Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.
Resumo:
The influence that trace concentrations Of SiO2 have on improving grain-boundary conduction via precursor scavenging using additional heat treatment at 1200 degreesC for 40 h before sintering was investigated. At a SiO2-impurity level (SIL) less than or equal to 160 ppm by weight, the grain-boundary resistivity (p(gb)) decreased to 20% of its value, while no improvement in grain-boundary conduction was found at a SIL greater than or equal to 310 ppm. The correlation between the resistance per unit grain-boundary area, p(gb), and average grain size indicated that the inhomogeneous distribution of the siliceous phase in the sample with a SIL greater than or equal to 310 ppm. hampered the scavenging reaction.
Resumo:
Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The grain-boundary conduction of 8 mol % ytterbia-stabilized zirconia (8YbSZ) was improved markedly by precursor scavenging via the two-stage sintering process. The most significant increase in the grain-boundary conductivity was found when the sample, whose conductivity was higher than that via Al2O3-derived scavenging, was heat-treated at 1250degreesC for greater than or equal to 20 h. The formation of a stable Si-containing phase such as ZrSiO4 during the first-stage heat-treatment was suggested as one probable scavenging route from the optimal heat-treatment temperature (HTT), long duration time (>20 h) at HTT, and the stability of the formed phase up to sintering temperatures (1500degrees C). (C) 2002 The Electrochemical Society.
Resumo:
High-resolution transmission electron microscopy (HRTEM) was used to study the phase of orthorhombic ZrO2 formed in magnesia partially stabilized zirconia (MgO-PSZ) during HRTEM specimen preparation. Based on the three reported crystal structures of orthorhombic ZrO2, with the space groups Pbcm, Pbc2(1) and Pbca, here it is shown that orthorhombic ZrO2 formed in MgO-PSZ has the Pbcm structure.
Resumo:
Palladium catalysts supported on alumina and zirconia were prepared by the impregnation method and calcined at 600 and 1000 ºC. Catalysts were characterized by BET measurements, XRD, XPS, O2-TPD and tested in methane combustion through temperature programmed surface reaction. Alumina supported catalysts were slightly more active than zirconia supported catalysts, but after initial heat treatment at 1000 ºC, zirconia supported palladium catalyst showed better performance above 500 ºC A pattern between temperature interval stability of PdOx species and activity was observed, where better PdOx stability was associated with more active catalysts.
Resumo:
Carbons have been prepared by the low-temperature pyrolysis, under argon, of a number of long-chain polymers. We have found that the resistivity (Omega cm(-1)) varies considerably with the temperature of pyrolysis; thus, for ammonium polyacrylate, the resistivity of that pyrolyzed at 600 degrees C is 9.7 x 10(4) Omega cm(-1) whereas that pyrolyzed at 1000 degrees C is ca. 3 Omega cm(-1). A similar situation arises for the other polymers studied (including radiolyzed cross-linked polyacrylamide). All those pyrolyzed at 600 degrees C had a resistivity of > 1 x 10(6) Omega cm(-1), whereas those pyrolyzed at 1000 degrees C had a resistivity of ca. 3-5 Omega cm(-1). A notable exception was that of unirradiated polyacrylamide, where the resistivity remained at > 1 x 10(6) Omega cm(-1) over the range of temperatures studied. The decrease of resistivity with increase of temperature of pyrolysis has been related to the formation of glassy carbon. Nanoparticles (4 nm) of tetragonal zirconia were formed when zirconium polyacrylate was pyrolyzed under similar conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.
Resumo:
The aim of this study is to evaluate through a literature review, the soft tissue response in contact with zirconia abutments, including case reports comparing prosthetics rehabilitations with zirconia and titanium abutments upto 3 years of follow-up as well as the factors that should be considered on implant's abutment selection. Metallic abutments can provide grayish color when in contact with thin soft tissues which may lead the implant prosthetic treatment to failure. In this context, the abutments of zirconia stand out because there is an excellent linking between esthetics and the health of peri-implant soft tissues. A consult of the published researches was made on the PubMed database from 2000 to September 2012. The including criteria were: literature reviews, clinical studies and case reports in English that focused on the response of the soft tissue in contact with zirconia implant abutments. The studies that were not in English and did not match the tackled issue were excluded. A total of 32 articles were found. According to the search strategy, just 16 articles were selected for this review. Three studies affirmed that zirconia abutments have an excellent soft tissue response; one study showed increased gingival recession with zirconia abutments and nine studies do not stand out any difference on biological behavior between titanium and zirconia abutments. Three studies affirmed that zirconia abutments provide natural gingival appearance, anatomic contour and greater esthetics. The use of zirconia abutments is recommended for anterior regions because of their greater optical properties and esthetic results and more studies should be performed and analyzed longitudinally regarding their biological response. The zirconia abutments have been established to be essential in order to achieve great esthetic results in cases of thin peri-implant soft tissues and in regions where the three-dimensional placement of implants is more superficial.
Resumo:
The above factors emphasize the scope of this thesis for further investigations on zirconia, the improvement of all-ceramic zirconia restorations, and especially the interaction of zirconia and veneering and its influence on the performance of the whole restoration. The introduction, chapter 1, gave a literature overview on zirconia ceramics. In chapter 2, the objective of the study was to evaluate the effect of abrading before and after sintering using alumina-based abrasives on the surface of yttria-tetragonal zirconia polycrystals. Particular attention was paid to the amount of surface stress–assisted phase transformation (tetragonal→monoclinic) and the presence of microcracks. Chapter 3 is based on the idea that the conventional sintering techniques for zirconia based materials, which are commonly used in dental reconstruction, may not provide a uniform heating, with consequent generation of microstructural flaws in the final component. As a consequence of the sintering system, using microwave heating, may represent a viable alternative. The purpose of the study was to compare the dimensional variations and physical and microstructural characteristics of commercial zirconia (Y-TZP), used as a dental restoration material, sintered in conventional and microwave furnaces. Chapter 4 described the effect of sandblasting before and after sintering on the surface roughness of zirconia and the microtensile bond strength of a pressable veneering ceramic to zirconia.