994 resultados para Improved Lines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research and innovation in the built environment is increasingly taking on an inter-disciplinary nature. The built environment industry and professional practice have long adopted multi and inter-disciplinary practices. The application of IT in Construction is moving beyond the automation and replication of discrete mono and multi-disciplinary tasks to replicate and model the improved inter-disciplinary processes of modern design and construction practice. A major long-term research project underway at the University of Salford seeks to develop IT modelling capability to support the design of buildings and facilities that are buildable, maintainable, operable, sustainable, accessible, and have properties of acoustic, thermal and business support performance that are of a high standard. Such an IT modelling tool has been the dream of the research community for a long time. Recent advances in technology are beginning to make such a modelling tool feasible.----- Some of the key problems with its further research and development, and with its ultimate implementation, will be the challenges of multiple research and built environment stakeholders sharing a common vision, language and sense of trust. This paper explores these challenges as a set of research issues that underpin the development of appropriate technology to support realisable advances in construction process improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for humans lost in vast stretches of ocean has always been a difficult task. This paper investigates a machine vision system that addresses this problem by exploiting the useful properties of alternate colour spaces. In particular, the paper investigates the fusion of colour information from the HSV, RGB, YCbCr and YIQ colour spaces within the emission matrix of a Hidden Markov Model tracker to enhance video based maritime target detection. The system has shown promising results. The paper also identifies challenges still needing to be met.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a fresh analysis of the widely-used Common Scrambling Algorithm Stream Cipher (CSA-SC). Firstly, a new representation of CSA-SC with a state size of only 89 bits is given, a significant reduction from the 103 bit state of a previous CSA-SC representation. Analysis of this 89-bit representation demonstrates that the basis of a previous guess-and-determine attack is flawed. Correcting this flaw increases the complexity of that attack so that it is worse than exhaustive key search. Although that attack is not feasible, the reduced state size of our representation makes it obvious that CSA-SC is vulnerable to several generic attacks, for which feasible parameters are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved synthetic route to α(1→3)/α(1→2)-linked mannooligosaccharides has been developed and applied to a more efficient preparation of the potent anti-angiogenic sulfated pentasaccharide, benzyl Manα(1→3)-Manα(1→3)-Manα(1→3)-Manα(1→2)-Man hexadecasulfate, using only two monosaccharide building blocks. Of particular note are improvements in the preparation of both building blocks and a simpler, final deprotection strategy. The route also provides common intermediates for the introduction of aglycones other than benzyl, either at the building block stage or after oligosaccharide assembly. The anti-angiogenic activity of the synthesized target compound was confirmed via the rat aortic assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equations governing saltwater intrusion in coastal aquifers are complex. Backward Euler time stepping approaches are often used to advance the solution to these equations in time, which typically requires that small time steps be taken in order to ensure that an accurate solution is obtained. We show that a method of lines approach incorporating variable order backward differentiation formulas can greatly improve the efficiency of the time stepping process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high level of scholarly writing required for a doctoral thesis is a challenge for many research students. However, formal academic writing training is not a core component of many doctoral programs. Informal writing groups for doctoral students may be one method of contributing to the improvement of scholarly writing. In this paper, we report on a writing group that was initiated by an experienced writer and higher degree research supervisor to support and improve her doctoral students’ writing capabilities. Over time, this group developed a workable model to suit their varying needs and circumstances. The model comprised group sessions, an email group, and individual writing. Here, we use a narrative approach to explore the effectiveness and value of our research writing group model in improving scholarly writing. The data consisted of doctoral students’ reflections to stimulus questions about their writing progress and experiences. The stimulus questions sought to probe individual concerns about their own writing, what they had learned in the research writing group, the benefits of the group, and the disadvantages and challenges to participation. These reflections were analysed using thematic analysis. Following this analysis, the supervisor provided her perspective on the key themes that emerged. Results revealed that, through the writing group, members learned technical elements (e.g., paragraph structure), non-technical elements (e.g., working within limited timeframes), conceptual elements (e.g., constructing a cohesive arguments), collaborative writing processes, and how to edit and respond to feedback. In addition to improved writing quality, other benefits were opportunities for shared writing experiences, peer support, and increased confidence and motivation. The writing group provides a unique social learning environment with opportunities for: professional dialogue about writing, peer learning and review, and developing a supportive peer network. Thus our research writing group has proved an effective avenue for building doctoral students’ capability in scholarly writing. The proposed model for a research writing group could be applicable to any context, regardless of the type and location of the university, university faculty, doctoral program structure, or number of postgraduate students. It could also be used within a group of students with diverse research abilities, needs, topics and methodologies. However, it requires a group facilitator with sufficient expertise in scholarly writing and experience in doctoral supervision who can both engage the group in planned writing activities and also capitalise on fruitful lines of discussion related to students’ concerns as they arise. The research writing group is not intended to replace traditional supervision processes nor existing training. However it has clear benefits for improving scholarly writing in doctoral research programs particularly in an era of rapidly increasing student load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of impostor dataset selection for GMM-based speaker verification is addressed through the recently proposed data-driven background dataset refinement technique. The SVM-based refinement technique selects from a candidate impostor dataset those examples that are most frequently selected as support vectors when training a set of SVMs on a development corpus. This study demonstrates the versatility of dataset refinement in the task of selecting suitable impostor datasets for use in GMM-based speaker verification. The use of refined Z- and T-norm datasets provided performance gains of 15% in EER in the NIST 2006 SRE over the use of heuristically selected datasets. The refined datasets were shown to generalise well to the unseen data of the NIST 2008 SRE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-automatic segmentation of still images has vast and varied practical applications. Recently, an approach "GrabCut" has managed to successfully build upon earlier approaches based on colour and gradient information in order to address the problem of efficient extraction of a foreground object in a complex environment. In this paper, we extend the GrabCut algorithm further by applying an unsupervised algorithm for modelling the Gaussian Mixtures that are used to define the foreground and background in the segmentation algorithm. We show examples where the optimisation of the GrabCut framework leads to further improvements in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Split System Approach (SSA) based methodology is presented to assist in making optimal Preventive Maintenance decisions for serial production lines. The methodology treats a production line as a complex series system with multiple PM actions over multiple intervals. Both risk related cost and maintenance related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimized considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimize Total Expected Cost (TEC) for asset maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.