772 resultados para IONIZING RADIATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 X 10^14 to 14 X 10^14 W /cm^2. We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We irradiated different cellular compartments and measured changes in expression of the FOS gene at the mRNA and protein levels. [H-3]Thymidine and tritiated water were used to irradiate the nucleus and the whole cell, respectively. I-125-Concanavalin A binding was used to irradiate the cell membrane differentially. Changes in FOS mRNA and protein levels were measured using semi-quantitative RT-PCR and SDS-PAGE Western blotting, respectively, Irradiation of the nucleus or the whole cell at a dose rate of 0.075 Gy/h caused no change in the level of FOS mRNA expression, but modestly (1.5-fold) induced FOS protein after 0.5 h, Irradiation of the nucleus at a dose rate of 0.43 Gy/h induced FOS mRNA by 1.5-fold after 0.5 h, but there was no significant effect after whole-cell irradiation. FOS protein was transiently induced 2.5-fold above control levels 0.5 h after a 0.43-Gy/h exposure of the nucleus or the whole cell. Irradiation of the cell membrane at a dose rate of 1.8 Gy/h for up to 2 h caused no change in the levels of expression of FOS mRNA or protein, but a dose rate of 6.8 Gy/h transiently increased the level of FOS mRNA S-fold after 0.5 h, These data demonstrate the complexity of the cellular response to radiation-induced damage at low doses. The lack of quantitative agreement between the transcript and protein levels for FOS suggests a role for posttranscriptional regulation. (C) 2000 by Radiation Research Society.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This short review summarizes the data obtained with various techniques for measuring the yields of double strand breaks (dsb) produced by particle radiations of differing linear energy transfer (LET) in order to obtain relative biological effectiveness (RBE) values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bystander responses underlie some of the current efforts to develop gene therapy approaches for cancer treatment. Similarly, they may have a role in strategies to treat tumours with targeted radioisotopes. In this study we show direct evidence for the production of a radiation-induced bystander response in primary human fibroblasts, We utilize a novel approach of using a charged-particle microbeam, which allows individual cells within a population to be selected and targeted with counted charged particles. Individual primary human fibroblasts within a population of 600-800 cells were targeted with between 1 and 15 helium ions (effectively, alpha -particles). The charged particles were delivered through the centre of the nucleus with an accuracy of +/- 2 mum and a detection and counting efficiency of greater than 99%. When scored 3 days later, even though only a single cell had been targeted, typically an additional 80-100 damaged cells were observed in the surviving population of about 5000 cells. The yield of damaged cells was independent of the number of charged particles delivered to the targeted cell, Similar results of a 2-3-fold increase in the background level of damage present in the population were observed whether 1 or 4 cells were targeted within the dish. Also, when 200 cells within one quadrant of the dish were exposed to radiation, there was a 2-3-fold increase in the damage level in an unexposed quadrant of the dish, This effect was independent of the presence of serum in the culture medium and was only observed when a cell was targeted, but not when only the medium was exposed, confirming that a cell-mediated response is involved. (C) 2001 Cancer Research Campaign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 and BARD1 to demonstrate that the BRCA1-BARD1 complex is required for ATM/ATR (ataxia-telangiectasia-mutated/ATM and Rad3-related)-mediated phosphorylation of p53(Ser-15) following IR- and UV radiation-induced DNA damage. In contrast, phosphorylation of a number of other ATM/ATR targets including H2AX, Chk2, Chk1, and c-jun does not depend on the presence of BRCA1-BARD1 complexes. Moreover, prior ATM/ATR-dependent phosphorylation of BRCA1 at Ser-1423 or Ser-1524 regulates the ability of ATM/ATR to phosphorylate p53(Ser-15) efficiently. Phosphorylation of p53(Ser-15) is necessary for an IR-induced G(1)/S arrest via transcriptional induction of the cyclin-dependent kinase inhibitor p21. Consistent with these data, repressing p53(Ser-15) phosphorylation by BRCA1-BARD1 depletion compromises p21 induction and the G(1)/S checkpoint arrest in response to IR but not UV radia-tion. These findings suggest that BRCA1-BARD1 complexes act as an adaptor to mediate ATM/ATR-directed phosphorylation of p53, influencing G(1)/S cell cycle progression after DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex) - from two Great Lakes and two crater lakes in Nicaragua - to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (dC and dN) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review considers the effects of ionizing radiation on the retina and examines the relationship between the natural course of radiation retinopathy and the radiobiology of the retinal vascular endothelial cell (RVEC). Radiation retinopathy presents clinically as a progressive pattern of degenerative and proliferative vascular changes, chiefly affecting the macula, and ranging from capillary occlusion, dilation, and microaneurysm formation, to telangiectasia, intraretinal microvascular abnormalities, and neovascularization. The total-radiation dose and fractionation schedule are the major determinants for the time of onset, rate of progression, and severity of retinopathy, although other factors such as concomitant chemotherapy and preexisting diabetes may exaggerate the vasculopathy by intensifying the oxygen-derived free-radical assault on the vascular cells. The differential radiosensitivity of RVECs is attributed to their nuclear chromatin conformation, their antioxidant status, and their environment. We propose pathogenetic mechanisms for radiation retinopathy and suggest that the peculiar latency and unique clinical pattern is related to the life cycle of the RVEC. A rationale is also proposed for the use of radiotherapy in the treatment of subneovascularization and age-related macular degeneration.