900 resultados para INTELIGÊNCIA ARTIFICIAL
Resumo:
No estudo aqui apresentado, aplicou-se um modelo de rede neural multicamadas para o apreçamento de calls sobre taxa de câmbio R$/US$, negociadas na Bolsa de Valores, Mercadorias & Futuros de São Paulo (BM&FBovespa), para o período de janeiro de 2004 a dezembro de 2007. A partir dos preços efetivamente praticados no mercado, comparou-se o desempenho entre essa técnica e o modelo de Black, utilizando-se métricas usuais de erro e testes estatísticos. Os resultados obtidos revelaram, em geral, a melhor adequação do modelo de inteligência artificial, em comparação ao modelo de Black, nos diferentes graus de moneyness.
Resumo:
A Inteligência Artificial hoje em dia tem várias aplicações e uma delas é em jogos de computadores. O objectivo deste trabalho é utilizar técnicas de Inteligência Artificial para desenvolver um agente capaz de jogar o jogo Oril e para tal, utiliza-se o algoritmo Minimax, que busca a árvore de jogadas da partida e tenta estimar a melhor jogada numa determinada profundidade avaliando os estados encontrados. Por outro lado pretende-se também fazer a implementação do jogo de oril num smartphone, tendo em conta a mobilidade e as capacidades de processamento desses equipamentos que nos permite utilizar elementos multimédia, para tornar a experiência de jogar contra o computador ou outro utilizador mais real.
Resumo:
No presente estudo, foi realizada uma avaliação de diferentes variáveis ambientais no mapeamento digital de solos em uma região no norte do Estado de Minas Gerais, utilizando redes neurais artificiais (RNA). Os atributos do terreno declividade e índice topográfico combinado (CTI), derivados de um modelo digital de elevação, três bandas do sensor Quickbird e um mapa de litologia foram combinados, e a importância de cada variável para discriminação das unidades de mapeamento foi avaliada. O simulador de redes neurais utilizado foi o "Java Neural Network Simulator", e o algoritmo de aprendizado, o "backpropagation". Para cada conjunto testado, foi selecionada uma RNA para a predição das unidades de mapeamento; os mapas gerados por esses conjuntos foram comparados com um mapa de solos produzido com o método convencional, para determinação da concordância entre as classificações. Essa comparação mostrou que o mapa produzido com o uso de todas as variáveis ambientais (declividade, índice CTI, bandas 1, 2 e 3 do Quickbird e litologia) obteve desempenho superior (67,4 % de concordância) ao dos mapas produzidos pelos demais conjuntos de variáveis. Das variáveis utilizadas, a declividade foi a que contribuiu com maior peso, pois, quando suprimida da análise, os resultados da concordância foram os mais baixos (33,7 %). Os resultados demonstraram que a abordagem utilizada pode contribuir para superar alguns dos problemas do mapeamento de solos no Brasil, especialmente em escalas maiores que 1:25.000, tornando sua execução mais rápida e mais barata, sobretudo se houver disponibilidade de dados de sensores remotos de alta resolução espacial a custos mais baixos e facilidade de obtenção dos atributos do terreno nos sistemas de informação geográfica (SIG).
Resumo:
Técnicas de mapeamento digital podem contribuir para agilizar a realização de levantamentos pedológicos detalhados. Objetivou-se com este trabalho obter um mapa digital de solos (MDS) com uso de redes neurais artificiais (RNA), utilizando correlações entre unidades de mapeamento (UM) e covariáveis ambientais. A área utilizada compreendeu aproximadamente 12.000 ha localizados no município de Barra Bonita, SP. A partir do resultado de uma análise de agrupamento das covariáveis ambientais, foram escolhidas cinco áreas de referência para realizar o mapeamento convencional. As UM identificadas subsidiaram a aplicação da técnica de RNA. Utilizaram-se o simulador de redes neurais JavaNNS e o algoritmo de aprendizado backpropagation. Pontos de referência foram coletados para avaliar o desempenho do mapa digital produzido. A posição na paisagem e o material de origem subjacente foram determinantes para o reconhecimento dos delineamentos das UM. Houve boa concordância entre as UM delineadas pelo MDS e pelo método convencional. A comparação entre os pontos de referência e o mapa de solos digital evidenciou exatidão de 72 %. O uso da abordagem MDS utilizada pode contribuir para diminuir a falta de informações semidetalhadas de solos em locais ainda não mapeados, tomando-se como base informações pedológicas obtidas de áreas de referência adjacentes.
Resumo:
Redes neurais constituem um campo da ciência da computação ligado à inteligência artificial, buscando implementar modelos matemáticos que se assemelhem às estruturas neurais biológicas. Nesse sentido, apresentam capacidade de adaptar os seus parâmetros como resultado da interação com o meio externo, melhorando gradativamente o seu desempenho na solução de um determinado problema. A utilização de redes neurais em sistemas computacionais de recuperação de informação permite atribuir um caráter dinâmico a tais sistemas, dado que as representações dos documentos podem ser reavaliadas e alteradas de acordo com a especificação de relevância atribuída pelos usuários aos documentos recuperados. O presente trabalho apresenta as principais iniciativas de se aplicarem os conceitos de redes neurais aos sistemas de recuperação de informação e avalia sua aplicabilidade em grandes bases documentais, como é o caso da Web.
Resumo:
O artigo relata um experimento de simulação computacional de um sistema de recuperação da informação composto por uma base de índices textuais de uma amostra de documentos, um software de rede neural artificial implementando conceitos da Teoria da Ressonância Adaptativa, para automação do processo de ordenação e apresentação de resultados, e um usuário humano interagindo com o sistema em processos de consulta. O objetivo do experimento foi demonstrar (i) a utilidade das redes neurais de Carpenter e Grossberg (1988) baseadas nessa teoria e (ii) o poder de resolução semântica com índices sintagmáticos da abordagem SiRILiCO proposta por Gottschalg-Duque (2005), para o qual um sintagma nominal ou proposição é uma unidade linguística constituda de sentido maior que o significado de uma palavra e menor que uma narrativa ou uma teoria. O experimento demonstrou a eficácia e a eficiência de um sistema de recuperação da informação combinando esses recursos, concluindo-se que um ambiente computacional dessa natureza terá capacidade de clusterização (agrupamento) variável on-line com entradas e aprendizado contínuos no modo não supervisionado, sem necessidade de treinamento em modo batch (off-line), para responder a consultas de usuários em redes de computadores com desempenho promissor.
Resumo:
Resumo: O objetivo deste trabalho foi verificar a concordância entre as redes neurais artificiais (RNAs) e o método de Eberhart & Russel na identificação de genótipos de feijão-caupi (Vigna unguiculata) com alta adaptabilidade e estabilidade fenotípicas. Utilizou-se o delineamento experimental de blocos ao acaso com quatro repetições. Os tratamentos consistiram de 18 linhagens experimentais e duas cultivares de feijão-caupi. Foram conduzidos quatro ensaios de valor de cultivo e uso nos municípios de Aquidauana, Chapadão do Sul e Dourados, no estado do Mato Grosso do Sul. Os dados de produtividade de grãos foram submetidos às análises de variância individual e conjunta. Em seguida, os dados foram submetidos às análises de adaptabilidade e estabilidade por meio dos métodos de Eberhart & Russell e de RNAs. Houve elevada concordância entre os métodos avaliados quanto à discriminação da adaptabilidade fenotípica dos genótipos de feijão-caupi semiprostrado, o que indica que as RNAs podem ser utilizadas em programas de melhoramento genético. Em ambos os métodos avaliados, os genótipos BRS Xiquexique, TE97-304G-12 e MNC99-542F-5 são recomendados para ambientes desfavoráveis, gerais e favoráveis, respectivamente, por apresentarem produtividade de grãos acima da média geral dos ambientes e alta estabilidade fenotípica.
Resumo:
Vários desenvolvimentos tecnológicos estão convergindo de forma a aumentar a influência da área de imagens nas pesquisas biomédicas e na medicina clínica. Muitos pesquisadores têm trabalhado no desenvolvimento de sistemas computadorizados para detecção automatizada e quantificação de anormalidades em imagens radiológicas. Estes sistemas são dedicados ao diagnóstico auxiliado por computador. Este artigo discute os conceitos básicos relacionados ao diagnóstico auxiliado por computador e apresenta uma revisão bibliográfica sobre o assunto.
Resumo:
The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.
Resumo:
Rede neural artificial consiste em um conjunto de unidades que contêm funções matemáticas, unidas por pesos. As redes são capazes de aprender, mediante modificação dos pesos sinápticos, e generalizar o aprendizado para outros arquivos desconhecidos. O projeto de redes neurais é composto por três etapas: pré-processamento, processamento e, por fim, pós-processamento dos dados. Um dos problemas clássicos que podem ser abordados por redes é a aproximação de funções. Nesse grupo, pode-se incluir a estimação do volume de árvores. Foram utilizados quatro arquiteturas diferentes, cinco pré-processamentos e duas funções de ativação. As redes que se apresentaram estatisticamente iguais aos dados observados também foram analisadas quanto ao resíduo e à distribuição dos volumes e comparadas com a estimação de volume pelo modelo de Schumacher e Hall. As redes neurais formadas por neurônios, cuja função de ativação era exponencial, apresentaram estimativas estatisticamente iguais aos dados observados. As redes treinadas com os dados normalizados pelo método da interpolação linear e equalizados tiveram melhor desempenho na estimação.
Resumo:
Objetivou-se neste estudo desenvolver e avaliar a aplicação de redes neurais artificiais para a projeção de parâmetros da distribuição Weibull. Utilizaram-se dados de parcelas permanentes de eucaliptos, mensuradas em oito ocasiões. Ajustou-se a função Weibull com dois parâmetros para todas as parcelas e ocasiões, pelo método da máxima verossimilhança. A projeção da distribuição diamétrica foi feita através de redes neurais artificiais. Comparou-se o método proposto com o método tradicionalmente utilizado na modelagem da distribuição diamétrica. Os modelos utilizando RNA apresentaram melhorias na dispersão gráfica dos resíduos, bem como das estatísticas avaliadas. O método proposto mostrou-se superior ao método comumente usado.
Resumo:
Objetivou-se com o presente trabalho desenvolver e validar um Sistema Especialista (SE) para auxiliar na detecção de fungos em análises de sanidade de sementes. O SE possui opções que permitem auxiliar a identificação de 46 fungos de importância econômica que ocorrem em sementes de algodão, arroz, cenoura, feijão, girassol, milho, soja, sorgo e trigo, submetidas ao teste de incubação em papel de filtro ('blotter test'). São apresentadas fotografias dos patógenos nas sementes e em lâminas, sob diferentes aumentos do estereomicroscópio e microscópio composto. Para aumentar o nível de certeza do usuário, textos referentes às fotografias e glossário de termos técnicos foram incluídos. O sistema fornece nível de confiança (porcentagem de acerto) na resposta ao realizar a diagnose e possibilita acesso aos detalhes sobre o patógeno encontrado. O sistema foi validado por 14 usuários com 3 níveis distintos de conhecimento (grupo 1: acadêmicos de Pós-Graduação da área, grupo 2: acadêmicos de Pós-Graduação de outras áreas e grupo 3: acadêmicos do curso de graduação em Agronomia). A porcentagem de acerto antes e após a utilização do SE foi a seguinte: grupo 1 = antes de acessar o programa a média foi de 62,3% e, após sua utilização, de 95,2%; para os grupos 2 e 3 = 0% de acerto antes de usar o programa e, após a utilização desse, a porcentagem de acerto médio subiu para 88,1 e 95,2%, respectivamente. Considerando todos os fungos testados na fase de validação, independente de seus hospedeiros, o SE em Patologia de Sementes proporcionou incremento na porcentagem média de acerto, após a utilização do sistema de 35,33% para o grupo 1, de 86% para o grupo 2, e de 94% para o grupo 3. Na análise estatística realizada pelo teste do ÷², considerando freqüência esperada de acerto de 90%, os resultados obtidos antes da utilização do SE foram significativos para os grupos 2 e 3, e não-significativos para o grupo 1. Após a utilização do sistema, os resultados foram não-significativos para todos os grupos, ou seja, os resultados esperados (90% de acerto) não foram atingidos. Dessa forma, pode-se verificar que o programa aumenta consideravelmente a acurácia e precisão na identificação de fungos no teste de sanidade de sementes e possibilita que profissionais sem conhecimento prévio na área possam acessar informações específicas, como as referentes à sanidade de sementes pelo método de incubação em papel de filtro.
Resumo:
O objetivo da comunicação é caracterizar uma escola de pensamento-o cognitivismo-e a disciplina a que ela deu origem. Depois de um breve apanhado das origens do cognitivismo descrevem-se os princípios ontológicos e metodológicos que o definem. Mostra-se a seguir a relação que há entre os computadores e a idéia funcionalista de considerar a mente como um sistema cujos elementos são caracterizados por suas funções, e não por sua constituição material. Discute-se finalmente a natureza e o nome da disciplina gerada pelo cognitivismo, sugerindo-se que se trata de uma proto-ciência, a qual deve ser denominada "Estudos Cognitivos" de preferência a "Ciência Cognitiva".
Resumo:
O contexto desta tese é a Inteligência Artificial aplicada à Educação, especificamente a área dos Sistemas Tutores Inteligentes (STI). Apesar das características multidisciplinares e interdisciplinares, a preocupação maior do trabalho se dá quanto aos aspectos computacionais. A multidisciplinaridade está na relação entre os aspectos educacionais, filosóficos e psicológicos inerentes a toda construção de um software educacional, e a interdisciplinaridade acontece no relacionamento da IA com a Informática na Educação. Esta tese propõe o uso de aspectos afetivos como apoio à decisão de ação por parte de um STI. As nossas hipóteses fundamentais são: um sistema de ensino e aprendizagem computacional deve levar em consideração fatores afetivos tornando mais flexível a interação; e a arquitetura de um sistema computacional de interação em tempo real com agentes humanos deve prever explicitamente, em sua arquitetura básica, as crenças e o raciocínio afetivos. Para demonstrar essas idéias, foi definida uma arquitetura para apoiar um STI de modo a reconhecer alguns fatores afetivos, representativos de estratégias de ação de agentes humanos em interação com sistemas. Esse reconhecimento é realizado através de construções retiradas dos comportamentos observáveis do agente humano em contextos determinados. A arquitetura prevê um Sistema Multiagente para executar a percepção de fatores afetivos e da conduta do aluno em interação e de um agente pedagógico, representando o tutor. O agente tutor é modelado através de estados mentais e é responsável pelo raciocínio de alto nível. O modelo computacional de agentes de Móra [MÓR2000] foi utilizado para implementar o “kernel cognitivo” (termo cunhado por Móra e Giraffa [GIR99] que designa a parte responsável pela deliberação). O “kernel cognitivo” decide que ações tomar para um conjunto de características de uma avaliação pedagógica. A utilização de fatores afetivos e da avaliação cognitiva de situações emocionais permite a flexibilização das estratégias quanto à adaptabilidade a agentes humanos. Particularmente, foi adotado o enfoque cognitivo para análise de situações, baseado em teorias cognitivistas sobre emoções. O uso de tecnologia multiagente, no enfoque mentalístico, especificamente BDI (Belief, Desire, Intention) e da ferramenta X-BDI, permite a formalização e construção de um tutor atuante na avaliação pedagógica. A modelagem do aluno passa a ser constituída de aspectos qualitativos e quantitativos. Estudos de casos são apresentados, em situações que consideram os fatores afetivos e nas mesmas situações sem estas considerações. As decisões do tutor para agir são analisadas e confrontadas. Os resultados mostram um impacto positivo na adaptabilidade e ação pedagógica do tutor, sendo coerente com as teorias modernas [SAL97],[DAM2000] sobre as emoções que as consideram partes fundamentais para agir. A maior contribuição desta tese está na agregação de raciocínio sobre a afetividade envolvida em situações de ensino aprendizagem de agentes humanos e artificiais e avança dentro da perspectiva de pesquisa do grupo de IA da UFRGS, quanto ao desenvolvimento de Ambientes de Ensino e Aprendizagem modelados com tecnologia multiagente, com o uso da metáfora de estados mentais.