986 resultados para IN-VITRO SELECTION
Resumo:
Principal Topic A small firm is unlikely to possess internally the full range of knowledge and skills that it requires or could benefit from for the development of its business. The ability to acquire suitable external expertise - defined as knowledge or competence that is rare in the firm and acquired from the outside - when needed thus becomes a competitive factor in itself. Access to external expertise enables the firm to focus on its core competencies and removes the necessity to internalize every skill and competence. However, research on how small firms access external expertise is still scarce. The present study contributes to this under-developed discussion by analysing the role of trust and strong ties in the small firm's selection and evaluation of sources of external expertise (henceforth referred to as the 'business advisor' or 'advisor'). Granovetter (1973, 1361) defines the strength of a network tie as 'a (probably linear) combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and the reciprocal services which characterize the tie'. Strong ties in the context of the present investigation refer to sources of external expertise who are well known to the owner-manager, and who may be either informal (e.g., family, friends) or professional advisors (e.g., consultants, enterprise support officers, accountants or solicitors). Previous research has suggested that strong and weak ties have different fortes and the choice of business advisors could thus be critical to business performance) While previous research results suggest that small businesses favour previously well known business advisors, prior studies have also pointed out that an excessive reliance on a network of well known actors might hamper business development, as the range of expertise available through strong ties is limited. But are owner-managers of small businesses aware of this limitation and does it matter to them? Or does working with a well-known advisor compensate for it? Hence, our research model first examines the impact of the strength of tie on the business advisor's perceived performance. Next, we ask what encourages a small business owner-manager to seek advice from a strong tie. A recent exploratory study by Welter and Kautonen (2005) drew attention to the central role of trust in this context. However, while their study found support for the general proposition that trust plays an important role in the choice of advisors, how trust and its different dimensions actually affect this choice remained ambiguous. The present paper develops this discussion by considering the impact of the different dimensions of perceived trustworthiness, defined as benevolence, integrity and ability, on the strength of tie. Further, we suggest that the dimensions of perceived trustworthiness relevant in the choice of a strong tie vary between professional and informal advisors. Methodology/Key Propositions Our propositions are examined empirically based on survey data comprising 153 Finnish small businesses. The data are analysed utilizing the partial least squares (PLS) approach to structural equation modelling with SmartPLS 2.0. Being non-parametric, the PLS algorithm is particularly well-suited to analysing small datasets with non-normally distributed variables. Results and Implications The path model shows that the stronger the tie, the more positively the advisor's performance is perceived. Hypothesis 1, that strong ties will be associated with higher perceptions of performance is clearly supported. Benevolence is clearly the most significant predictor of the choice of a strong tie for external expertise. While ability also reaches a moderate level of statistical significance, integrity does not have a statistically significant impact on the choice of a strong tie. Hence, we found support for two out of three independent variables included in Hypothesis 2. Path coefficients differed between the professional and informal advisor subsamples. The results of the exploratory group comparison show that Hypothesis 3a regarding ability being associated with strong ties more pronouncedly when choosing a professional advisor was not supported. Hypothesis 3b arguing that benevolence is more strongly associated with strong ties in the context of choosing an informal advisor received some support because the path coefficient in the informal advisor subsample was much larger than in the professional advisor subsample. Hypothesis 3c postulating that integrity would be more strongly associated with strong ties in the choice of a professional advisor was supported. Integrity is the most important dimension of trustworthiness in this context. However, integrity is of no concern, or even negative, when using strong ties to choose an informal advisor. The findings of this study have practical relevance to the enterprise support community. First of all, given that the strength of tie has a significant positive impact on the advisor's perceived performance, this implies that small business owners appreciate working with advisors in long-term relationships. Therefore, advisors are well advised to invest into relationship building and maintenance in their work with small firms. Secondly, the results show that, especially in the context of professional advisors, the advisor's perceived integrity and benevolence weigh more than ability. This again emphasizes the need to invest time and effort into building a personal relationship with the owner-manager, rather than merely maintaining a professional image and credentials. Finally, this study demonstrates that the dimensions of perceived trustworthiness are orthogonal with different effects on the strength of tie and ultimately perceived performance. This means that entrepreneurs and advisors should consider the specific dimensions of ability, benevolence and integrity, rather than rely on general perceptions of trustworthiness in their advice relationships.
Resumo:
The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 906-919, 2009
Resumo:
The literature and anecdotal evidence suggests that that there is more to tenancy selection (firm location) than the profit maximisation drive that traditional neo-classical economic location theory suggests. In the first instance these models assume property markets are rational and perfectly competitive; the CBD office market is clearly neither rational nor perfectly competitive. This fact alone relegates such models to the margins of usefulness for an industry that seeks to satisfy tenant demand in order to optimise returns on capital invested. Acknowledgment of property market imperfections are universally accepted to the extent that all contemporary texts discuss the lack of a coherent centralised market place and incomplete and poorly disseminated information processes as fundamental inadequacies which characterise the property market inefficiencies. Less well researched are the facets of the market which allow the observer to determine market activity to be significantly irrational. One such facet is that of ‘decision maker preferences’. The decision to locate a business operation at one location as opposed to another seems ostensibly a routine choice based on short, medium and long term business objectives. These objectives are derived from a process of strategic planning by one or more individuals whose goal is held to be to optimise outcomes which benefit the business (and presumably those employed within it). However the decision making processes appear bounded by how firms function, the institutional context in which they operate, as well as by opportunistic behaviour by individual decision makers who allow personal preferences to infiltrate and ‘corrupt’ the process. In this way, history, culture, geography, as well as institutions all become significant to the extent that these influence and shape individual behaviour which in turn determine the morphology of individual preferences, as well as providing a conduit for them to take effect. This paper exams historical and current literature on the impact of individual behaviour in the decision making process within organisations as a precursor to an investigation of the tenancy decision making process within the CBD office market. Literature on the topic falls within a number of research disciplines, philosophy, psychology and economics to name a few.
Resumo:
We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.
Resumo:
In this study, a nanofiber mesh made by co-electrospinning medical grade poly(epsilon-caprolactone) and collagen (mPCL/Col) was fabricated and studied. Its mechanical properties and characteristics were analyzed and compared to mPCL meshes. mPCL/Col meshes showed a reduction in strength but an increase in ductility when compared to PCL meshes. In vitro assays revealed that mPCL/Col supported the attachment and proliferation of smooth muscle cells on both sides of the mesh. In vivo studies in the corpus cavernosa of rabbits revealed that the mPCL/Col scaffold used in conjunction with autologous smooth muscle cells resulted in better integration with host tissue when compared to cell free scaffolds. On a cellular level preseeded scaffolds showed a minimized foreign body reaction.
Resumo:
Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.
Resumo:
The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.
Resumo:
Articular cartilage exhibits limited intrinsic regenerative capacity and focal tissue defects can lead to the development of osteoarthritis (OA), a painful and debilitating loss of cartilage tissue. In Australia, 1.4 million people are affected by OA and its prevalence is increasing in line with current demographics. As treatment options are limited, new therapeutic approaches are being investigated including biological resurfacing of joints with tissue-engineered cartilage. Despite some progress in the field, major challenges remain to be addressed for large scale clinical success. For example, large numbers of chondrogenic cells are required for cartilage formation, but chondrocytes lose their chondrogenic phenotype (dedifferentiate) during in vitro propagation. Additionally, the zonal organization of articular cartilage is critical for normal cartilage function, but development of zonal structure has been largely neglected in cartilage repair strategies. Therefore, we hypothesised that culture conditions for freshly isolated human articular chondrocytes from non-OA and OA sources can be improved by employing microcarrier cultures and a reduced oxygen environment and that oxygen is a critical factor in the maintenance of the zonal chondrocyte phenotype. Microcarriers have successfully been used to cultivate bovine chondrocytes, and offer a potential alternative for clinical expansion of human chondrocytes. We hypothesised that improved yields can be achieved by propagating human chondrocytes on microcarriers. We found that cells on microcarriers acquired a flattened, polygonal morphology and initially proliferated faster than monolayercultivated cells. However, microcarrier cultivation over four weeks did not improve growth rates or the chondrogenic potential of non-OA and OA human articular chondrocytes over conventional monolayer cultivation. Based on these observations, we aimed to optimise culture conditions by modifying oxygen tension, to more closely reflect the in vivo environment. We found that propagation at 5% oxygen tension (moderate hypoxia) did not improve proliferation or redifferentiation capacity of human osteoarthritic chondrocytes. Moderate hypoxia increased the expression of chondrogenic markers during redifferentiation. However, osteoarthritic chondrocytes cultivated on microcarriers exhibited lower expression levels of chondrogenic surface marker proteins and had at best equivalent redifferentiation capacities compared to monolayer-cultured cells. This suggests that monolayer culture with multiple passaging potentially selects for a subpopulation of cells with higher differentiation capacity, which are otherwise rare in osteoarthritic, aged cartilage. However, fibroblastic proteins were found to be highly expressed in all cultures of human osteoarthritic chondrocytes indicating the presence of a high proportion of dedifferentiated, senescent cells with a chondrocytic phenotype that was not rescued by moderate hypoxia. The different zones of cartilage support chondrocyte subpopulations, which exhibit characteristic protein expression and experience varying oxygen tensions. We, therefore, hypothesised that oxygen tension affects the zonal marker expression of human articular chondrocytes isolated from the different cartilage layers. We found that zonal chondrocytes maintained these phenotypic differences during in vitro cultivation. Low oxygen environments favoured the expression of the zonal marker proteoglycan 4 in superficial cells, most likely through the promotion of chondrogenesis. The putative zonal markers clusterin and cartilage intermediate layer protein were found to be expressed by all subpopulations of human osteoarthritic chondrocytes ex vivo and, thus, may not be reliable predictors of in vitro stratification using these clinically relevant cells. The findings in this thesis underline the importance of considering low oxygen conditions and zonal stratification when creating native-like cartilaginous constructs. We have not yet found the right cues to successfully cultivate clinically-relevant human osteoarthritic chondrocytes in vitro. A more thorough understanding of chondrocyte biology and the processes of chondrogenesis are required to ensure the clinical success of cartilage tissue engineering.
Resumo:
This study develops a model (i.e., secondary values selection process - 2VS) to describe how values shared by individuals (i.e., secondary values) contribute to the creation of meaning and interpretation in organisations. Elements of the model are identified through exploration of two bodies of literature (a) cultural approaches to organisational studies, and (b) theories of evolution. Incorporated within the model are observable elements that support analysis and evaluation of the 2VS. Outcomes of the study are (a) development of a more complete understanding of the Selection Process in organising and (b) creation of a mechanism for cultural analysis of organisational settings.
The rise and demise of assessment centres in the selection of principals in Queensland State Schools