632 resultados para Hypothalamus latéral
Resumo:
The effects of sodium and potassium excretion after intrahypothalamic administration of two α-adrenoceptor agonists and the effect of α-adrenoceptor antagonists were studied in groups of rats. Prazosin was equally effective at blocking the natriuretic and kaliuretic responses to the α1-adrenoceptor agonist phenylephrine and the mixed α1/α2-adrenoceptor agonist noradrenaline, while yohimbine which acts preferentially on α2-adrenoceptors was effective in potentiating these responses. These results suggest the presence of two types of α-adrenoceptors for the modulation of ventromedial hypothalamic pathways that interfere with the regulation of the two cations: stimulation of α1-adrenoceptors facilitates, while stimulation of α2-adrenoceptors inhibits the excretion of the ions.
Resumo:
Many experiments have been performed to evaluate the physiological role of catecholaminergic mechanisms of gonadotropin release. The purpose of the present study was to determine the concentration of β-adrenoreceptors in the remaining (right) cerebral cortex and in right and left hypothalamic halves of hemi-decorticated female rats which exhibited elevated plasma gonadotropin levels as observed previously. The density of β-receptors was measured using a high-affinity β-adrenergic ligand, iodocyanopindolol (ICYP). Scatchard estimates were obtained for maximum binding (B(max) fmol/mg of tissues) from pooled cerebral cortical and hypothalamic tissue of animals under several experimental conditions after hemi-decortication and sham operation. There was an increase in β-adrenoreceptor density in the remaining (right) cerebral cortex at all times examined in hemi-decorticate in comparison with the sham-operated animals (7 days, +10.9%; 21 days, +8.4%; 90 days, +22%; and 90 days plus ovariectomy, +34.8%). The number of β-adrenoreceptors in the right hypothalamic half in hemi-decorticates decreased at 21 days (-42.20%) and then increased at 90 days (+76.63%) and 90 days plus ovariectomy (+51.75%) when compared with the left hypothalamic half. At the same time there were no significant changes in the sham-operated animals when comparing the receptor density in the right and left hypothalamic halves, respectively. Thus, our results suggest a direct adrenergic pathway by which the left cortex can influence the right cortex and a crossed pathway to the contralateral hypothalamus changing adrenergic activity which can alter the β-adrenergic receptor binding capacity in the hypothalamus.
Resumo:
The effects of clonidine on sodium and potassium excretions were examined after previous administration of prazosin (an α 1-adrenergic receptor antagonist) and yohimbine (an α 2-adrenergic receptor antagonist) into the ventromedial nucleus of the hypothalamus of conscious rats. Clonidine injected into the ventromedial nucleus of the hypothalamus induced inhibitory and facilitatory effects on the urinary sodium and potassium excretions. The results suggest that facilitatory effects of clonidine on natriuresis and kaliuresis are mediated through activation of α 1-adrenoceptors and that inhibitory effects require α(2A)-adrenoceptors.
Resumo:
The subfornical organ (SFO) and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANG II) on water and salt regulation. Several anatomical findings have demonstrated neural connections between the SFO and the LH. The present experiments were conducted to investigate the role of the α-adrenergic antagonists and agonists injected into the LH on the water and salt intake elicited by injections of ANG II into the SFO. Prazosin (an α1-adrenergic antagonist) injected into the LH increased the salt ingestion, whereas yohimbine (an α2-adrenergic antagonist) and propranolol (a β-adrenergic antagonist) antagonized the salt ingestion induced by administration of ANG II into the SFO. Previous administration of clonidine (an α2-adrenergic agonist) or noradrenaline into the LH increased, whereas pretreatment with phenylephrine decreased the sodium intake induced by injection of ANG II into the SFO. Previous treatment with prazosin and propranolol reduced the water intake induced by ANG II. Phenylephrine increased the dipsogenic responses produced by ANG II, whereas previous treatment with clonidine injected into the LH reduced the water intake induced by ANG II administration into the SFO. The LH involvement with SFO on the excitatory and inhibitory mechanisms related to water and sodium intake is suggested.
Resumo:
In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24 h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress. © 2012 Elsevier B.V. and ECNP.
Resumo:
The objective was to evaluate when the LH reserve was re-established in postpartum Nellore (Bos indicus) cows by evaluating the response of the hypothalamic-pituitary axis responsiveness to exogenous GnRH or estradiol benzoate (EB). Additionally, we tested the influence of dietary supplementation (SUPL) and calf removal (CR) on the duration of postpartum anestrus. Ninety multiparous lactating Nellore cows were randomly assigned to eight groups. The EB and GnRH groups received 1.0 mg EB (N = 7), and 50 μg lecireline (N = 16), respectively. Additional cows were given the same hormones, and subjected to either nutritional supplementation (EB-SUPL, N = 9; GnRH-SUPL, N = 16), or calf removal at 72 hours after calving (EB-CR, N = 4; GnRH-CR, N = 13). The remaining two groups were the LH (12.5 mg, N = 14) and control groups (saline, N = 11). Hormones were administered weekly from 7 (±5) days postpartum to first ovulation (detection of a CL during a weekly ultrasonographic examination). Blood samples were collected just before and 2 hours (GnRH, LH, and control groups) or 18 hours (EB groups) after hormone or saline (control) administration. Ovulation occurred as early as 15 days postpartum in the GnRH group. The mean ± SEM intervals (days) from calving to first ovulation were EB, 87.7 ± 4.2; EB-CR, 20.3 ± 1.2; EB-SUPL, 60.3 ± 3.2; GnRH, 40.4 ± 2.1; GnRH-CR, 21.0 ± 1.1; GnRH-SUPL, 26.4 ± 1.1; LH, 35.6 ± 1.1; and control, 60.9 ± 2.1. We concluded that there was sufficient LH in the pituitary gland (of Nellore cows) from the second week postpartum to induce ovulation in response to exogenous GnRH. Additionally, calf removal and nutritional supplementation reduced, by 2 to 4 weeks, the interval from calving to an LH increase and ovulation induced by GnRH or EB. © 2013.
Resumo:
The aim of the present study was to investigate the role of the lateral hypothalamus (LH) and its local glutamatergic neurotransmission in the cardiovascular adjustments observed when rats are submitted to acute restraint stress. Bilateral microinjection of the nonspecific synaptic inhibitor CoCl2 (0.1 nmol in 100 nL) into the LH enhanced the heart rate (HR) increase evoked by restraint stress without affecting the blood pressure increase. Local microinjection of the selective N-methyl-d-aspartate (NMDA) glutamate receptor antagonist LY235959 (2 nmol in 100 nL) into the LH caused effects that were similar to those of CoCl2. No changes were observed in the restraint-related cardiovascular response after a local microinjection of the selective non-NMDA glutamatergic receptor antagonist NBQX (2 nmol in 100 nL) into the LH. Intravenous administration of the muscarinic cholinergic receptor antagonist homatropine methyl bromide (0.2 mg/kg), a quaternary ammonium drug that does not cross the blood-brain barrier, abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. In summary, our findings show that the LH plays an inhibitory role on the HR increase evoked by restraint stress. Present results also indicate that local NMDA glutamate receptors, through facilitation of cardiac parasympathetic activity, mediate the LH inhibitory influence on the cardiac response to acute restraint stress. The bilateral microinjection of the CoCl2 or LY235959 into the LH enhanced the HR increase evoked by restraint stress without affecting the blood pressure increase. Intravenous administration of the homatropine methyl bromide abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. These results suggest that such LH influence is mediated by local NMDA glutamate receptors and involves parasympathetic nervous activation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present experiments were conducted to investigate the role of the α1- and α2-adrenergic receptors of the lateral hypothalamus (LH) on the drinking response elicited by intracerebroventricular (i.c.v) injections of carbachol and angiotensin II (AII) in rats. Clonidine (an α2-adrenergic agonist) injected into the LH produced a dose-dependent reduction of the drinking responses elicited by i.c.v. administration of carbachol and AII. The α1-adrenergic agonist phenylephrine injected into the LH reduced the dipsogenic response to i.c.v. AII, but not to carbachol. Injection of yohimbine (an α2-adrenergic antagonist) and prazosin (an α1-adrenergic antagonist) into the LH also reduced the water intake produced by i.c.v. injection of AII. Previous injection of α1- or α2-adrenergic antagonists into the LH increased the antidipsogenic effect of clonidine or phenylephrine injected into the same area on the water intake induced by i.c.v. AII. These results show that the α1- and α2-adrenergic receptors of the LH are involved in the control of drinking responses elicited by i.c.v. injection of AII in rats. They also show that clonidine, but not phenylephrine, suppresses the drinking induced by i.c.v. carbachol. The data suggest that the discharge of central α-adrenergic receptors has a dual (inhibitory and excitatory) effect on water intake induced by central AII. © 1991.
Resumo:
In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.
Resumo:
We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 mu moles/0.1 mu l) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure. (c) 2012 Wiley Periodicals, Inc.