993 resultados para Hybrid working machines
Resumo:
Bonuses – which are often used to mitigate principal-agent problems and to encourage employees to work harder – have increased tremendously in the financial sector during the last decade, and have often been seen as a contributing factor to the financial crisis of 2008. The recent European Union (EU) action to adopt a policy that restricts bonuses paid to bankers may seem promising at first, but this does not address the real issues behind variable rewards. Compensation policies should be changed to encourage responsible risk-taking and decision-making through the implementation of broader performance metrics, forfeitable holdbacks and hybrid bonds. Furthermore, a change in organisational culture is needed to improve ethical behaviour leading to a re-balancing of stakeholders’ interests in the financial sector.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.
Resumo:
This paper focuses on minimizing printed circuit board (PCB) assembly time for a chipshootermachine, which has a movable feeder carrier holding components, a movable X–Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.
Resumo:
We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HM-SVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully-annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences. © 2008. Licensed under the Creative Commons.
Resumo:
Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.
Resumo:
In Marxist frameworks “distributive justice” depends on extracting value through a centralized state. Many new social movements—peer to peer economy, maker activism, community agriculture, queer ecology, etc.—take the opposite approach, keeping value in its unalienated form and allowing it to freely circulate from the bottom up. Unlike Marxism, there is no general theory for bottom-up, unalienated value circulation. This paper examines the concept of “generative justice” through an historical contrast between Marx’s writings and the indigenous cultures that he drew upon. Marx erroneously concluded that while indigenous cultures had unalienated forms of production, only centralized value extraction could allow the productivity needed for a high quality of life. To the contrary, indigenous cultures now provide a robust model for the “gift economy” that underpins open source technological production, agroecology, and restorative approaches to civil rights. Expanding Marx’s concept of unalienated labor value to include unalienated ecological (nonhuman) value, as well as the domain of freedom in speech, sexual orientation, spirituality and other forms of “expressive” value, we arrive at an historically informed perspective for generative justice.
Resumo:
Abstract: In the mid-1990s when I worked for a telecommunications giant I struggled to gain access to basic geodemographic data. It cost hundreds of thousands of dollars at the time to simply purchase a tile of satellite imagery from Marconi, and it was often cheaper to create my own maps using a digitizer and A0 paper maps. Everything from granular administrative boundaries to right-of-ways to points of interest and geocoding capabilities were either unavailable for the places I was working in throughout Asia or very limited. The control of this data was either in a government’s census and statistical bureau or was created by a handful of forward thinking corporations. Twenty years on we find ourselves inundated with data (location and other) that we are challenged to amalgamate, and much of it still “dirty” in nature. Open data initiatives such as ODI give us great hope for how we might be able to share information together and capitalize not only in the crowdsourcing behavior but in the implications for positive usage for the environment and for the advancement of humanity. We are already gathering and amassing a great deal of data and insight through excellent citizen science participatory projects across the globe. In early 2015, I delivered a keynote at the Data Made Me Do It conference at UC Berkeley, and in the preceding year an invited talk at the inaugural QSymposium. In gathering research for these presentations, I began to ponder on the effect that social machines (in effect, autonomous data collection subjects and objects) might have on social behaviors. I focused on studying the problem of data from various veillance perspectives, with an emphasis on the shortcomings of uberveillance which included the potential for misinformation, misinterpretation, and information manipulation when context was entirely missing. As we build advanced systems that rely almost entirely on social machines, we need to ponder on the risks associated with following a purely technocratic approach where machines devoid of intelligence may one day dictate what humans do at the fundamental praxis level. What might be the fallout of uberveillance? Bio: Dr Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong. She presently holds the position of Associate Dean – International in the Faculty of Engineering and Information Sciences. Katina is the IEEE Technology and Society Magazine editor-in-chief, and IEEE Consumer Electronics Magazine senior editor. Since 2008 she has been a board member of the Australian Privacy Foundation, and until recently was the Vice-Chair. Michael researches on the socio-ethical implications of emerging technologies with an emphasis on an all-hazards approach to national security. She has written and edited six books, guest edited numerous special issue journals on themes related to radio-frequency identification (RFID) tags, supply chain management, location-based services, innovation and surveillance/ uberveillance for Proceedings of the IEEE, Computer and IEEE Potentials. Prior to academia, Katina worked for Nortel Networks as a senior network engineer in Asia, and also in information systems for OTIS and Andersen Consulting. She holds cross-disciplinary qualifications in technology and law.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Tämä diplomityö on tehty Lappeenrannan teknilliselle yliopistolle osana yliopiston sähköisen liikkumisen tutkimusta. Työssä on jatkokehitetty ja dokumentoitu Drive!-projektin hybriditraktorin simulaatiomallia, joka toimii Mevea- ja Simulink-ohjelmistoissa. Mevean simulaatioalustalla on mallinnettu traktorin mekaniikkaa ja ympäristöä, kun taas Simulinkillä on simuloitu hybriditraktorin sähkötekniikkaa, dieselgeneraattoria, energiavarastoa ja apulait-teita. Työssä on tarkasteltu traktorin erilaisia maatalouden työtehtäviä ja tämän jälkeen tarkasteltu simulaatiomallin ja simulaatioiden avulla minkälaisella hybriditraktorilla näitä töitä olisi mahdollista suorittaa. Lopuksi tarkastellaan vielä simulaatiomallilla noin 75 kW:n hybriditraktorin toimintaa maatalon pihapiirin työtehtävissä ja lasketaan hybridisoinnin lisäinvestoinnille takaisinmaksuaika. Virtuaalimallilla tehtyjen simulaatioiden ja laskelmien perusteella saatiin tulokseksi, että tämän hetken komponentti- ja energiahinnoilla maataloustraktorin hybridisointi ei ole taloudellisesti kannattavaa. Kuitenkin on huomionarvoista, että ajettaessa pelkällä akkusähköllä käytetyn energian hinta on noin kolmannes verrattaessa perinteiseen dieseltraktoriin.
Resumo:
This study presents two novel methods for treating important environmental contaminants from two different wastewater streams. One process utilizes the kinetic advantages and reliability of ion exchanging clinoptilolite in combination with biological treatment to remove ammonium from municipal sewage. A second process, HAMBgR (Hybrid Adsorption Membrane Biological Reactor), combines both ion exchange resin and bacteria into a single reactor to treat perchlorate contaminated waters. Combining physicochemical adsorptive treatment with biological treatment can provide synergistic benefits to the overall removal processes. Ion exchange removal solves some of the common operational reliability limitations of biological treatment, like slow response to environmental changes and leaching. Biological activity can in turn help reduce the economic and environmental challenges of ion exchange processes, like regenerant cost and brine disposal. The second section of this study presents continuous flow column experiments, used to demonstrate the ability of clinoptilolite to remove wastewater ammonium, as well as the effectiveness of salt regeneration using highly concentrated sea salt solutions. The working capacity of clinoptilolite more than doubled over the first few loading cycles, while regeneration recovered more than 98% of ammonium. Using the regenerant brine for subsequent halotolerant algae growth allowed for its repeated use, which could lead to cost savings and production of valuable algal biomass. The algae were able to uptake all ammonium in solution, and the brine was able to be used again with no loss in regeneration efficiency. This process has significant advantages over conventional biological nitrification; shorter retention times, wider range of operational conditions, and higher quality effluent free of nitrate. Also, since the clinoptilolite is continually regenerated and the regenerant is rejuvenated by algae, overall input costs are expected to be low. The third section of this study introduces the HAMBgR process for the elimination of perchlorate and presents batch isotherm experiments and pilot reactor tests. Results showed that a variety of ion-exchange resins can be effectively and repeatedly regenerated biologically, and maintain an acceptable working capacity. The presence of an adsorbent in the HAMBgR process improved bioreactor performance during operational fluctuations by providing a physicochemical backup to the biological process. Pilot reactor tests showed that the HAMBgR process reduced effluent perchlorate spikes by up to 97% in comparison to a conventional membrane bio-reactor (MBR) that was subject to sudden changes in influent conditions. Also, the HAMBgR process stimulated biological activity and lead to higher biomass concentrations during increased contaminant loading conditions. Conventional MBR systems can be converted into HAMBgR’s at a low cost, easily justifiable by the realized benefits. The concepts employed in the HAMBgR process can be adapted to treat other target contaminants, not just perchlorate.
Resumo:
Abstract: This paper reports a lot-sizing and scheduling problem, which minimizes inventory and backlog costs on m parallel machines with sequence-dependent set-up times over t periods. Problem solutions are represented as product subsets ordered and/or unordered for each machine m at each period t. The optimal lot sizes are determined applying a linear program. A genetic algorithm searches either over ordered or over unordered subsets (which are implicitly ordered using a fast ATSP-type heuristic) to identify an overall optimal solution. Initial computational results are presented, comparing the speed and solution quality of the ordered and unordered genetic algorithm approaches.
Resumo:
Virtual screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface in order to find new hotspots, where ligands might potentially interact with, and which is implemented in last generation massively parallel GPU hardware, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods and concretely BINDSURF is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of the scoring functions used in BINDSURF we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, being this information exploited afterwards to improve BINDSURF VS predictions.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.