967 resultados para Huaihe River Valley


Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用ERA40逐日再分析资料、NCEP/NCAR2逐日再分析资料、中国740个测站日降水资料、上海台风研究所提供的西太平洋热带气旋资料、Kaplan等重建的月平均SSTA资料、NOAA逐日长波辐射(OLR)等资料,应用离散功率谱分析、带通滤波、EOF分析等统计方法,研究了东亚夏季风(EASM)的移动特征、东亚地区季节内振荡(ISO)的基本特征、季节内振荡对东亚夏季风活动的影响、季节内振荡对东亚夏季风异常活动的影响机理。主要结论如下: (1)综合动力和热力因素定义了可动态描述东亚夏季风移动和强度的指数,并利用该指数研究了东亚夏季风的爆发和移动的季节内变化及其年际和年代际变化特征。研究发现,气候平均东亚夏季风前沿分别在28候、33候、36候、38候、40候、44候出现了明显的跳跃。东亚夏季风活动具有显著的年际变率,主要由于季风前沿在某些区域异常停滞和突然跨越北跳或南撤引起,造成中国东部旱涝灾害频繁发生。东亚夏季风的活动具有明显的年代际变化,在1965年、1980年、1994年发生了突变,造成中国东部降水由“南旱北涝”向“南涝北旱”的转变。 (2)东亚季风区季节内变化具有10~25d和30~60d两个波段的季节内振荡周期,以30-60d为主。存在三个主要低频模态,第一模态主要表征了EASM在长江中下游和华北地区活动期间的低频形势;第二模态印度洋-菲律宾由低频气旋式环流控制,主要表现了ISO在EASM爆发期间的低频形势;第三模态主要出现在EASM在华南和淮河活动期间的低频形势。第一模态和第三模态是代表东亚夏季风活动异常的主要低频形势。 (3)热带和副热带地区ISO总是沿垂直切变风的垂直方向传播。因此,在南海-菲律宾东北风垂直切变和副热带西太平洋北风垂直切变下,大气热源激发菲律宾附近交替出现的低频气旋和低频反气旋不断向西北传播,副热带西太平洋ISO以向西传播为主。中高纬度地区,乌拉尔山附近ISO以向东、向南移动或局地振荡为主;北太平洋中部ISO在某些情况下向南、向西传播。 (4)季风爆发期,伴随着热带东印度洋到菲律宾一系列低频气旋和低频反气旋, 冷空气向南输送,10~25天和30~60天季节内振荡低频气旋同时传入南海加快了南海夏季风的爆发。在气候态下,ISO活动表现的欧亚- 太平洋(EAP)以及太平洋-北美(PNA)低频波列分布特征(本文提出的EAP和PNA低频波列与传统意义上的二维定点相关得到的波列不同)。这种低频分布形式使得欧亚和太平洋中高纬度的槽、脊及太平洋副热带高压稳定、加强,东亚地区的低频波列则成为热带和中高纬度ISO相互作用影响东亚夏季风活动的纽带。不同的阶段表现不同的低频模态,30~60d低频模态的转变加快了EASM推进过程中跳跃性;30-60d低频模态的维持使得EASM前沿相对停滞。 (5)30-60d滤波场,菲律宾海域交替出现的低频气旋和低频反气旋不断向西北传播到南海-西太平洋一带。当南海-西太平洋地区低频气旋活跃时,季风槽加强、东伸,季风槽内热带气旋(TC)频数增加;当南海-西太平洋低频反气旋活跃时,季风槽减弱、西退,TC处于间歇期,生成位置不集中。 (6)在El Nino态下,大气季节内振荡偏弱,北传特征不明显,但ISO由中高纬度北太平洋中部向南和副热带西太平洋向西的传播特征显著,东亚地区ISO活动以第三模态为主,EASM集中停滞在华南和淮河流域,常伴随着持续性区域暴雨的出现,易造成华南和江淮流域洪涝灾害,长江和华北持续干旱。在La Nina态下,大气季节内振荡活跃,且具有明显的向北传播特征,PNA低频波列显著,东亚地区ISO活动以第一模态单峰为主;EASM主要停滞在长江中下游和华北地区,这些地区出现异常持续强降水,华南和淮河流域多干旱;在El Nino态向La Nina态转换期,ISO活动以第一模态双峰为主,长江中下游常常出现二度梅。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing—which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them—including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these terraces from terraces formed by externally forced pulses of vertical incision. In a separate study, Chapter 5 utilizes image and topographic data from the Mars Reconnaissance Orbiter to quantitatively identify spatial structures in the polar layered deposits of Mars, and identifies sequences of beds, consistently 1-2 meters thick, that have accumulated hundreds of kilometers apart in the north polar layered deposits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Sierra Leone River Estuary is a relatively young drowned river valley, it is shallow except for a deep channel which passes close to the Freetown shoreline. The upper reaches merge into a network of creeks and channels fringed by large areas of mangrove swamps. It is a tidal estuary of the semi-mixed type with the saline oceanic water entering it on a diurnal cycle. The climate of Sierra Leone is marked by a very distinct change between a very wet rainy season and a dry season. The tidal range of the Estuary (spring 3.03m; neap 2.28m) does not impede normal use of the harbour. The tidal variations can be felt as far as 42 miles inland along the water courses of the Sierra Leone River and its tributaries. The volume of fresh water entering the Estuary is large during the rainy season and greatly reduced during the dry season. Consequently there is a marked fall in salinity during the rainy season and higher salinities due to the marine influence prevailing during the dry season. The nature of the shores and bottom, the hydrography and chemistry of the estuarine system have been outlined in relation to the prevailing climatic conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Each spring approximately 500,000 sandhill cranes and some endangered whooping cranes use the Central Platte River Valley in Nebraska as a staging habitat during their migration north to breeding and nesting grounds in Canada, Alaska, and the Siberian Arctic. Over the last century changes in the flow of the river have altered the river channels and the distribution of roost sites. USGS researchers studied linkages between water flow, sediment supply, channel morphology, and preferred sites for crane roosting. These results are useful for estimating crane populations and for providing resource managers with techniques to understand crane habitats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focuses on tectonic geomorphology and the response of the Ken River catchment to postulated tectonic forcing along a NE-striking monocline fold in the Panna region, Madhya Pradesh, India. Peninsular India is underlain by three northeast-trending paleotopographic ridges of Precambrian Indian basement, bounded by crustal-scale faults. Of particular interest is the Pokhara lineament, a crustal scale fault that defines the eastern edge of the Faizabad ridge, a paleotopographic high cored by the Archean Bundelkhand craton. The Pokhara lineament coincides with the monocline structure developed in the Proterozoic Vindhyan Supergroup rocks along the Bundelkhand cratonic margin. A peculiar, deeply incised meander-like feature, preserved along the Ken River where it flows through the monocline, may be intimately related to the tectonic regime of this system. This thesis examines 41 longitudinal stream profiles across the length of the monocline structure to identify any tectonic signals generated from recent surface uplift above the Pokhara lineament. It also investigates the evolution of the Ken River catchment in response to the generation of the monocline fold. Digital Elevation Models (DEM) from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to delineate a series of tributary watersheds and extract individual stream profiles which were imported into MATLAB for analysis. Regression limits were chosen to define distinct channel segments, and knickpoints were defined at breaks between channel segments where there was a discrete change in the steepness of the channel profile. The longitudinal channel profiles exhibit the characteristics of a fluvial system in transient state. There is a significant downstream increase in normalized steepness index in the channel profiles, as well as a general increase in concavity downstream, with some channels exhibiting convex, over-steepened segments. Normalized steepness indices and uppermost knickpoint elevations are on average much higher in streams along the southwest segment of the monocline compared to streams along the northeast segment. Most channel profiles have two to three knickpoints, predominantly exhibiting slope-break morphology. These data have important implications for recent surface uplift above the Pokhara lineament. Furthermore, geomorphic features preserved along the Ken River suggest that it is an antecedent river. The incised meander-like feature appears to be the abandoned river valley of a former Ken River course that was captured during the evolution of the landscape by what is the present day Ken River.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study is to create a petroleum system model and to assess whether or not the La Luna Formation has potential for unconventional exploration and production in the Middle Magdalena Valley Basin (MMVB), Colombia. Today, the Magdalena River valley is an intermontane valley located between the Central and Eastern Cordillera of Colombia. The underlying basin, however, represents a major regional sedimentary basin that received deposits from the Triassic through the Cenozoic. In recent years Colombia has been of great exploration interest because of its potentially vast hydrocarbon resources, existing petroleum infrastructure, and skilled workforce. Since the early 1900s when the MMVB began producing, it has led to discoveries of 1.9 billion barrels of oil (BBO) and 2.5 trillion cubic feet (Tcf) of gas (Willatt et al., 2012). Colombia is already the third largest producer of oil in South America, and there is good potential for additional unconventional exploration and production in the Cretaceous source rocks (Willatt et al., 2012). Garcia Gonzalez et al. (2009) estimate the potential remaining hydrocarbons in the La Luna Formation in the MMVB to be between 1.15 and 10.33 billion barrels of oil equivalent (BBOE; P90 and P10 respectively), with 2.02 BBOE cumulative production to date. Throughout the 1900s and early 2000s, Cenozoic continental and transitional clastic reservoirs were the primary exploration interest in the MMVB (Dickey, 1992). The Cretaceous source rocks, such as the La Luna Formation, are now the target for unconventional exploration and production. In the MMVB, the La Luna formation is characterized by relatively high total organic carbon (TOC) values, moderate maturity, and adequate thickness and depth (Veigal and Dzelalijal, 2014). The La Luna Formation is composed of Cenomanian-Santonian aged shales, marls, and limestones (Veigal and Dzelalijal, 2014). In addition to the in-situ hydrocarbons, the fractured limestones in the La Luna formation act as secondary reservoirs for light oil from other formations (Veigal and Dzelalijal, 2014). Thus the system can be considered more of a hybrid play, rather than a pure unconventional play. The Cretaceous source rocks of the MMVB exhibit excellent potential for unconventional exploration and production. Due to the complex structural nature of the MMVB, an understanding of the distribution of rocks and variations in rock qualities is essential for reducing risk in this play.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focuses on tectonic geomorphology and the response of the Ken River catchment to postulated tectonic forcing along a NE-striking monocline fold in the Panna region, Madhya Pradesh, India. Peninsular India is underlain by three northeast-trending paleotopographic ridges of Precambrian Indian basement, bounded by crustal-scale faults. Of particular interest is the Pokhara lineament, a crustal scale fault that defines the eastern edge of the Faizabad ridge, a paleotopographic high cored by the Archean Bundelkhand craton. The Pokhara lineament coincides with the monocline structure developed in the Proterozoic Vindhyan Supergroup rocks along the Bundelkhand cratonic margin. A peculiar, deeply incised meander-like feature, preserved along the Ken River where it flows through the monocline, may be intimately related to the tectonic regime of this system. This thesis examines 41 longitudinal stream profiles across the length of the monocline structure to identify any tectonic signals generated from recent surface uplift above the Pokhara lineament. It also investigates the evolution of the Ken River catchment in response to the generation of the monocline fold. Digital Elevation Models (DEM) from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to delineate a series of tributary watersheds and extract individual stream profiles which were imported into MATLAB for analysis. Regression limits were chosen to define distinct channel segments, and knickpoints were defined at breaks between channel segments where there was a discrete change in the steepness of the channel profile. The longitudinal channel profiles exhibit the characteristics of a fluvial system in transient state. There is a significant downstream increase in normalized steepness index in the channel profiles, as well as a general increase in concavity downstream, with some channels exhibiting convex, over-steepened segments. Normalized steepness indices and uppermost knickpoint elevations are on average much higher in streams along the southwest segment of the monocline compared to streams along the northeast segment. Most channel profiles have two to three knickpoints, predominantly exhibiting slope-break morphology. These data have important implications for recent surface uplift above the Pokhara lineament. Furthermore, geomorphic features preserved along the Ken River suggest that it is an antecedent river. The incised meander-like feature appears to be the abandoned river valley of a former Ken River course that was captured during the evolution of the landscape by what is the present day Ken River.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Understanding spatio-temporal variation in malaria incidence provides a basis for effective disease control planning and monitoring. Methods Monthly surveillance data between 1991 and 2006 for Plasmodium vivax and Plasmodium falciparum malaria across 128 counties were assembled for Yunnan, a province of China with one of the highest burdens of malaria. County-level Bayesian Poisson regression models of incidence were constructed, with effects for rainfall, maximum temperature and temporal trend. The model also allowed for spatial variation in county-level incidence and temporal trend, and dependence between incidence in June–September and the preceding January–February. Results Models revealed strong associations between malaria incidence and both rainfall and maximum temperature. There was a significant association between incidence in June–September and the preceding January–February. Raw standardised morbidity ratios showed a high incidence in some counties bordering Myanmar, Laos and Vietnam, and counties in the Red River valley. Clusters of counties in south-western and northern Yunnan were identified that had high incidence not explained by climate. The overall trend in incidence decreased, but there was significant variation between counties. Conclusion Dependence between incidence in summer and the preceding January–February suggests a role of intrinsic host-pathogen dynamics. Incidence during the summer peak might be predictable based on incidence in January–February, facilitating malaria control planning, scaled months in advance to the magnitude of the summer malaria burden. Heterogeneities in county-level temporal trends suggest that reductions in the burden of malaria have been unevenly distributed throughout the province.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.