452 resultados para Hopf Bifurcations
Resumo:
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
Resumo:
In this paper, we propose a model for the destruction of three-dimensional horseshoes via heterodimensional cycles. This model yields some new dynamical features. Among other things, it provides examples of homoclinic classes properly contained in other classes and it is a model of a new sort of heteroclinic bifurcations we call generating. © 2008 Cambridge University Press.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
A presente dissertação consta de estudos sobre deconvolução sísmica, onde buscamos otimizar desempenhos na operação de suavização, na resolução da estimativa da distribuição dos coeficientes de reflexão e na recuperação do pulso-fonte. Os filtros estudados são monocanais, e as formulações consideram o sismograma como o resultado de um processo estocástico estacionário, e onde demonstramos os efeitos de janelas e de descoloração. O principio aplicado é o da minimização da variância dos desvios entre o valor obtido e o desejado, resultando no sistema de equações normais Wiener-Hopf cuja solução é o vetor dos coeficientes do filtro para ser aplicado numa convolução. O filtro de deconvolução ao impulso é desenhado considerando a distribuição dos coeficientes de reflexão como uma série branca. O operador comprime bem os eventos sísmicos a impulsos, e o seu inverso é uma boa aproximação do pulso-fonte. O janelamento e a descoloração melhoram o resultado deste filtro. O filtro de deconvolução aos impulsos é desenhado utilizando a distribuição dos coeficientes de reflexão. As propriedades estatísticas da distribuição dos coeficientes de reflexão tem efeito no operador e em seu desempenho. Janela na autocorrelação degrada a saída, e a melhora é obtida quando ela é aplicada no operador deconvolucional. A transformada de Hilbert não segue o princípio dos mínimos-quadrados, e produz bons resultados na recuperação do pulso-fonte sob a premissa de fase-mínima. O inverso do pulso-fonte recuperado comprime bem os eventos sísmicos a impulsos. Quando o traço contém ruído aditivo, os resultados obtidos com auxilio da transformada de Hilbert são melhores do que os obtidos com o filtro de deconvolução ao impulso. O filtro de suavização suprime ruído presente no traço sísmico em função da magnitude do parâmetro de descoloração utilizado. A utilização dos traços suavizados melhora o desempenho da deconvolução ao impulso. A descoloração dupla gera melhores resultados do que a descoloração simples. O filtro casado é obtido através da maximização de uma função sinal/ruído. Os resultados obtidos na estimativa da distribuição dos coeficientes de reflexão com o filtro casado possuem melhor resolução do que o filtro de suavização.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we prove that the full repressilator equations in dimension six undergo a supercritical Hopf bifurcation.
Resumo:
Pós-graduação em Física - IFT
Resumo:
The use of antiretroviral therapy has proven to be remarkably effective in controlling the progression of human immunodeficiency virus (HIV) infection and prolonging patient's survival. Therapy however may fail and therefore these benefits can be compromised by the emergence of HIV strains that are resistant to the therapy. In view of these facts, the question of finding the reason for which drug-resistant strains emerge during therapy has become a worldwide problem of great interest. This paper presents a deterministic HIV-1 model to examine the mechanisms underlying the emergence of drug-resistance during therapy. The aim of this study is to determine whether, and how fast, antiretroviral therapy may determine the emergence of drug resistance by calculating the basic reproductive numbers. The existence, feasibility and local stability of the equilibriums are also analyzed. By performing numerical simulations we show that Hopf bifurcation may occur. The model suggests that the individuals with drug-resistant infection may play an important role in the epidemic of HIV. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A complete characterization of the stability boundary of a class of nonlinear dynamical systems that admit energy functions is developed in this paper. This characterization generalizes the existing results by allowing the type-zero saddle-node nonhyperbolic equilibrium points on the stability boundary. Conceptual algorithms to obtain optimal estimates of the stability region (basin of attraction) in the form of level sets of a given family of energy functions are derived. The behavior of the stability region and the corresponding estimates are investigated for parameter variation in the neighborhood of a type-zero saddle-node bifurcation value.
Resumo:
Background Regional differences in shear stress have been identified as reason for early plaque formation in vessel bifurcations. We aimed to investigate regional plaque morphology and composition using intravascular ultrasound (IVUS) and virtual histology (IVUS–VH) in coronary artery bifurcations. Methods We performed IVUS and IVUS–VH studies at coronary bifurcations to analyze segmental plaque burden and composition of different segments in relation to their orientation to the bifurcation. Results A total of 236 patients with a mean age of 59 ± 11 years (69% male) were analyzed. Plaque burden was higher at the contralateral vessel wall facing the bifurcation compared to the ipsilateral vessel wall and this difference was true for proximal and distal segments (proximal: 37 ± 12% and 45 ± 15% for segments at the ipsilateral and contralateral vessel wall, respectively, p < 0.001; distal: 37 ± 10% and 47 ± 15% for segments at the ipsilateral and contralateral vessel wall, respectively, p < 0.001). In addition, these segments exhibited a higher proportion of dense calcium and a lower proportion of fibrous tissue and fibro fatty tissue. Conclusions Segments on the contralateral wall of the bifurcation which have previously been identified as regions with low shear stress not only exhibited a higher plaque burden, but also a higher degree of calcification.