933 resultados para Health facilities -- Communication systems
Resumo:
In this study, the authors investigate the outage-optimal relay strategy under outdated channel state information (CSI) in a decode-and-forward cooperative communication system. They first confirm mathematically that minimising the outage probability under outdated CSI is equivalent to minimising the conditional outage probability on the outdated CSI of all the decodable relays' links. They then propose a multiple-relay strategy with optimised transmitting power allocation (MRS-OTPA) that minimises the conditional outage probability. It is shown that this MRS is a generalised relay approach to achieve the outage optimality under outdated CSI. To reduce the complexity, they also propose a MRS with equal transmitting power allocation (MRS-ETPA) that achieves near-optimal outage performance. It is proved that full spatial diversity, which has been achieved under ideal CSI, can still be achieved under outdated CSI through MRS-OTPA and MRS-ETPA. Finally, the outage performance and diversity order of MRS-OTPA and MRS-ETPA are evaluated by simulation.
Resumo:
INTRODUCTION: Modern day antiretroviral therapy allows HIV+ pregnant women to lower the likelihood of viral transmission to their infants before, during, and after birth from 20-45% to less than 5%. In developing countries, where non-facility births may outnumber facility births, infant access to safe antiretroviral medication during the critical first three days after birth is often limited. A single-dose, polyethylene pouch ("Pratt Pouch") addresses this challenge by allowing the medication to be distributed to mothers during antenatal care. METHODS: The Pratt Pouch was introduced as part of a one year clinical feasibility study in two districts in Southern Province, Zambia. Participating nurses, community health workers, and pharmacists were trained before implementation. Success in achieving improved antiretroviral medication access was assessed via pre intervention and post intervention survey responses by HIV+ mothers. RESULTS: Access to medication for HIV-exposed infants born outside of a health facility increased from 35% (17/51) before the introduction of the pouch to 94% (15/16) after (p<0.05). A non-significant increase in homebirth rates from 33% (pre intervention cohort) to 50% (post intervention cohort) was observed (p>0.05). Results remained below the national average homebirth rate of 52%. Users reported minimal spillage and a high level of satisfaction with the Pratt Pouch. CONCLUSION: The Pratt Pouch enhances access to infant antiretroviral medication in a rural, non-facility birth setting. Wide scale implementation could have a substantial global impact on HIV transmission rates from mother to child.
Resumo:
This paper is on the use and performance of M-path polyphase Infinite Impulse Response (IIR) filters for channelisation, conventionally where Finite Impulse Response (FIR) filters are preferred. This paper specifically focuses on the Discrete Fourier Transform (DFT) modulated filter banks, which are known to be an efficient choice for channelisation in communication systems. In this paper, the low-pass prototype filter for the DFT filter bank has been implemented using an M-path polyphase IIR filter and we show that the spikes present at the stopband can be avoided by making use of the guardbands between narrowband channels. It will be shown that the channelisation performance will not be affected when polyphase IIR filters are employed instead of their counterparts derived from FIR prototype filters. Detailed complexity and performance analysis of the proposed use will be given in this article.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
This pamphlet on mental health facilities in Iowa was undertaken to meet the need for certain factual and practical information which the Iowa Mental Health Authority, the Board of control of State Institutions, the State Department of Social Welfare and the State University of Iowa School of Social Work felt would be helpful to workers in the field.
Resumo:
Over the past few years, the number of wireless networks users has been increasing. Until now, Radio-Frequency (RF) used to be the dominant technology. However, the electromagnetic spectrum in these region is being saturated, demanding for alternative wireless technologies. Recently, with the growing market of LED lighting, the Visible Light Communications has been drawing attentions from the research community. First, it is an eficient device for illumination. Second, because of its easy modulation and high bandwidth. Finally, it can combine illumination and communication in the same device, in other words, it allows to implement highly eficient wireless communication systems. One of the most important aspects in a communication system is its reliability when working in noisy channels. In these scenarios, the received data can be afected by errors. In order to proper system working, it is usually employed a Channel Encoder in the system. Its function is to code the data to be transmitted in order to increase system performance. It commonly uses ECC, which appends redundant information to the original data. At the receiver side, the redundant information is used to recover the erroneous data. This dissertation presents the implementation steps of a Channel Encoder for VLC. It was consider several techniques such as Reed-Solomon and Convolutional codes, Block and Convolutional Interleaving, CRC and Puncturing. A detailed analysis of each technique characteristics was made in order to choose the most appropriate ones. Simulink models were created in order to simulate how diferent codes behave in diferent scenarios. Later, the models were implemented in a FPGA and simulations were performed. Hardware co-simulations were also implemented to faster simulation results. At the end, diferent techniques were combined to create a complete Channel Encoder capable of detect and correct random and burst errors, due to the usage of a RS(255,213) code with a Block Interleaver. Furthermore, after the decoding process, the proposed system can identify uncorrectable errors in the decoded data due to the CRC-32 algorithm.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.
Resumo:
The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.
Resumo:
OBJECTIVE To analyze the effectiveness of the Chilean System of Childhood Welfare in transferring benefits to socially vulnerable families. METHODS A cross-sectional study with a sample of 132 families from the Metropolitan Region, Chile, stratified according to degree of social vulnerability, between September 2011 and January 2012. Semi-structured interviews were conducted with mothers of the studied families in public health facilities or their households. The variables studied were family structure, psychosocial risk in the family context and integrated benefits from the welfare system in families that fulfill the necessary requirements for transfer of benefits. Descriptive statistics to measure location and dispersion were calculated. A binary logistic regression, which accounts for the sample size of the study, was carried out. RESULTS The groups were homogenous regarding family size, the presence of biological father in the household, the number of relatives living in the same dwelling, income generation capacity and the rate of dependency and psychosocial risk (p ≥ 0.05). The transfer of benefits was low in all three groups of the sample (≤ 23.0%). The benefit with the best coverage in the system was the Single Family Subsidy, whose transfer was associated with the size of the family, the presence of relatives in the dwelling, the absence of the father in the household, a high rate of dependency and a high income generation capacity (p ≤ 0.10). CONCLUSIONS The effectiveness of benefit transfer was poor, especially in families that were extremely socially vulnerable. Further explanatory studies of benefit transfers to the vulnerable population, of differing intensity and duration, are required in order to reduce health disparities and inequalities.
Resumo:
In this master’s thesis, possibilities to utilize Near Field Communication (NFC) technology in health care applications are examined. NFC is a short-range wireless communication technology that enables the exchange of data between devices. Main components in NFC are tag, which contains data, a NFC reader device, which can be for instance embedded to mobile phone and also act as a tag, and an antennae in both tag and reader. In this work NFC technology is discussed and its utilization in health care information systems that are in use or in trial. Utilization of information technology in health care field is examined superficially. In this thesis, a system utilizing NFC is designed and its requirements and architecture presented. NFC is used in identification of care worker. When care worker arrives at the house of a patient, she brings the NFC-enabled mobile phone near NFC tag. This sends information to the application server. This information contains the time of arrival and patient and location identifier. When care worker leaves the place, she repeats the procedure. Information gathered can be used in reporting and real time tracking.
Resumo:
The radio communication system is one of the most critical system of the overall satellite platform: it often represents the only way of communication, between a spacecraft and the Ground Segment or among a constellation of satellites. This thesis focuses on specific innovative architectures for on-board and on-ground radio systems. In particular, this work is an integral part of a space program started in 2004 at the University of Bologna, Forlì campus, which led to the completion of the microsatellite ALMASat-1, successfully launched on-board the VEGA maiden flight. The success of this program led to the development of a second microsatellite, named ALMASat-EO, a three-axis stabilized microsatellite able to capture images of the Earth surface. Therefore, the first objective of this study was focused on the investigation of an innovative, efficient and low cost architecture for on-board radio communication systems. The TT&C system and the high data rate transmitter for images downlink design and realization are thoroughly described in this work, together with the development of the embedded hardware and the adopted antenna systems. Moreover, considering the increasing interest in the development of constellations of microsatellite, in particular those flying in close formations, a careful analysis has been carried out for the development of innovative communication protocols for inter-satellite links. Furthermore, in order to investigate the system aspects of space communications, a study has been carried out at ESOC having as objective the design, implementation and test of two experimental devices for the enhancement of the ESA GS. Thus, a significant portion of this thesis is dedicated to the description of the results of a method for improving the phase stability of GS radio frequency equipments by means of real-time phase compensation and a new way to perform two antennas arraying tracking using already existing ESA tracking stations facilities.
Resumo:
Background
Postpartum hemorrhage is the most significant contributor to maternal mortality globally, claiming 140,000 lives annually. Postpartum hemorrhage is a leading cause of maternal death in South Africa, with the literature indicating that 80 percent of the postpartum hemorrhage deaths in South Africa are avoidable. Ghana, as of 2010, witnesses 2700 maternal deaths annually, primarily because of poor quality of care in health facilities and services being difficult to access. As per WHO recommendations, uterotonics are integral to treating postpartum hemorrhage as soon as it is diagnosed. In case of persistent bleeding or limited availability of uterotonics, the uterine balloon tamponade (UBT) can be used as a second line of defense. If both these measures are unable to counter the bleeding, providers must perform surgical interventions. Literature on the UBT, as one tool in the protocol to address postpartum hemorrhage, has shown it to have success rates ranging from 60 to 100 percent. Despite the potential to lower the number of postpartum hemorrhage deaths in South Africa and Ghana, the UBT has not been incorporated widely in South Africa and Ghana. The aim of this study is to describe the barriers involved with integrating the UBT into South Africa and Ghana’s health systems to address postpartum hemorrhage.
Methods
The study took place in multiple sites in South Africa (Cape Town, Johannesburg, Durban and Mpumalanga) and in Accra, Ghana. South Africa and Ghana were selected because postpartum hemorrhage contributes greatly to their maternal mortality numbers and there is potential in both countries to lower those rates through greater use of the UBT. A total of 25 participants were interviewed through purposive sampling, snowball sampling and participant referrals, and included various categories of stakeholders integral to the integration process of a medical device. Individual in-depth interviews were used for data collection, with interview questions being tailored to each stakeholder category. The focus of the interviews was on the protocol used to counter postpartum hemorrhage, the frequency with which the UBT is used as part of the protocol, and the process of integrating it into the South Africa and Ghana’s health systems. The data collected were coded using NVivo and analyzed using content analysis.
Results
The barriers to integration of the uterine balloon tamponade to address postpartum hemorrhage in South Africa and Ghana were evident on the political, economic and health delivery levels. The results indicated that the barriers to integration in South Africa included the low recognition of postpartum hemorrhage as a problem, the lack of clarity surrounding the role of the Medicines Control Council as a regulatory body for medical devices, and low awareness of the UBT as an intervention to control postpartum hemorrhage. The barriers in Ghana were the cash constraints experienced by the Ghana Health Services to fund medical devices, a heavy reliance on donors for funding, and the lack of consistent knowledge on processes involving clinical trials for new medical devices in Ghana.
Conclusion
Existing literature on methods to counter postpartum hemorrhage to reduce maternal mortality has focused on and emphasized the efficacy of the UBT. Despite overwhelming evidence supporting the use of the UBT, many health systems across the world, particularly low-income countries, do not have access to the device owing to numerous barriers in integrating the device into obstetric care. This study illustrates the need to focus on incorporating the UBT into health systems for greater availability to health workers and its use as standard of care. Ultimately, this study can be used as a stepping-stone for more research on this subject, providing evidence to influence policymakers to integrate the UBT into their protocols for postpartum hemorrhage response.
Resumo:
The aim of this paper is to measure and to correct for the potential incomparability of responses to the SHARE survey on health care responsiveness. A parametric approach based on the use of anchoring vignettes is applied to cross-sectional data (2006-2007) in eleven European countries. More than 7,000 respondents aged 50 years old and over were asked to assess the quality of health care responsiveness in three domains: waiting time for medical treatment, quality of the conditions in visited health facilities, and communication and involvement in decisions about the treatment. Our results suggest that there is reporting heterogeneity across countries and across individuals within countries, and the degree of heterogeneity varies with the health care domain. Although leading countries in terms of health care responsiveness remain among the most successful even after correction for reporting heterogeneity, one may acknowledge many shifts in the ranking of the other countries.