994 resultados para HSV-1
Resumo:
Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpesviruses.
Resumo:
BACKGROUND Over 3500 HIV-positive women give birth annually in Ukraine, a setting with high prevalence of sexually transmitted infections. Herpes simplex virus Type 2 (HSV-2) co-infection may increase HIV mother-to-child transmission (MTCT) risk. We explored factors associated with HSV-2 seropositivity among HIV-positive women in Ukraine, and its impact on HIV MTCT. METHODS Data on 1513 HIV-positive women enrolled in the Ukraine European Collaborative Study from 2007 to 2012 were analysed. Poisson and logistic regression models respectively were fit to investigate factors associated with HSV-2 seropositivity and HIV MTCT. RESULTS Median maternal age was 27 years (IQR 24-31), 53% (796/1513) had been diagnosed with HIV during their most recent pregnancy and 20% had a history of injecting drugs. Median antenatal CD4 count was 430 cells/mm(3) (IQR 290-580). Ninety-six percent had received antiretroviral therapy antenatally. HSV-2 seroprevalence was 68% (1026/1513). In adjusted analyses, factors associated with HSV-2 antibodies were history of pregnancy termination (APR 1.30 (95% CI 1.18-1.43) for ≥ 2 vs. 0), having an HIV-positive partner (APR 1.15 (95% CI 1.05-1.26) vs partner's HIV status unknown) and HCV seropositivity (APR 1.23 (95 % CI 1.13-1.35)). The overall HIV MTCT rate was 2.80% (95% CI 1.98-3.84); no increased HIV MTCT risk was detected among HSV-2 seropositive women after adjusting for known risk factors (AOR 1.43 (95% CI 0.54-3.77). CONCLUSION No increased risk of HIV MTCT was detected among the 68% of HIV-positive women with antibodies to HSV-2, in this population with an overall HIV MTCT rate of 2.8%. Markers of ongoing sexual risk among HIV-positive HSV-2 seronegative women indicate the importance of interventions to prevent primary HSV-2 infection during pregnancy in this high-risk group.
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
The modification of peripherally metalated meso-η1-platiniometalloporphyrins, such as trans-[PtBr(NiDAPP)(PPh3)2] (H2DAPP = 5-phenyl-10,20-bis(3‘,5‘-di-tert-butylphenyl)porphyrin), leads to the analogous platinum(II) nitrato and triflato electrophiles in almost quantitative yields. Self-assembly reactions of these meso-platinioporphyrin tectons with pyridine, 4,4‘-bipyridine, or various meso-4-pyridylporphyrins in chloroform generate new multicomponent organometallic porphyrin arrays containing up to five porphyrin units. These new types of supramolecular arrays are formed exclusively in high yields and are stable in solution or in the solid state for extended periods. They were characterized by multinuclear NMR and UV−visible spectroscopy as well as high-resolution electrospray ionization mass spectrometry.