242 resultados para HOLOGRAM QSAR
Resumo:
Identification of epitopes capable of binding multiple HLA types will significantly rationalise the development of epitope-based vaccines. A quantitative method assessing the contribution of each amino acid at each position was applied to over 500 nonamer peptides binding to 5 MHC alleles — A*0201, A*0202, A*0203, A*0206 and A*6802 — which together define the HLA-A2-like supertype. FXIGXI (L)IFV was identified as a supermotif for the A2-supertype based on the contributions of the common preferred amino acids at each of the nine positions. The results indicate that HLA-A*6802 is an intermediate allele standing between A2 and A3 supertypes: at anchor position 2 it is closer to A3 and at anchor position 9 it is nearer to A2. Models are available free on-line at http://www.jenner.ac.uk/MHCPred and can be used for binding affinity prediction.
Resumo:
Complex amplitude encoded in any digital hologram must undergo quantization, usually in either polar or rectangular format . In this paper these two schemes are compared under the constraints and conditions inherent in digital holography . For Fourier transform holograms when the spectrum is levelled through phase coding, the rectangular format is shown to be optimal . In the absence of phase coding, and also if the amplitude spectrum has a large dynamic range, the polar format may be preferable .
Resumo:
Quantization formats of four digital holographic codes (Lohmann,Lee, Burckhardt and Hsueh-Sawchuk) are evaluated. A quantitative assessment is made from errors in both the Fourier transform and image domains. In general, small errors in the Fourier amplitude or phase alone do not guarantee high image fidelity. From quantization considerations, the Lee hologram is shown to be the best choice for randomly phase coded objects. When phase coding is not feasible, the Lohmann hologram is preferable as it is easier to plot.
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
Novel Biginelli dihydropyrimidines of biological interest were prepared using p-toluene sulphonic acid as an efficient catalyst. All the thirty-two synthesised dihydropyrimidines were evaluated for their in vitro antioxidant activity using DPPH method. Only, compounds 28 and 29 exhibited reasonably good antioxidant activity. Furthermore, the synthesised Biginelli compounds were subjected for their in vitro anticancer activity against MCF-7 human breast cancer cells. The title compounds were tested at the concentration of 10 μg. Compounds exhibited activity ranging from weak to moderate and, from moderate to high in terms of percentage cytotoxicity. Among them, compounds 10 and 11 exhibited significant anticancer activity. In order to elucidate the three-dimensional structure–activity relationships (3D QSAR) towards their anticancer activity, we subjected them for comparative molecular similarity indices analysis (CoMSIA). Illustration regarding their synthesis, analysis, antioxidant activity, anticancer activity and 3D QSAR study is described.
Resumo:
Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.
Resumo:
The signal-to-noise (S/N) ratio in the reconstructed image from a binary hologram has been quantitatively related to the amplitude and phase quantization levels. The S/N ratio increases monotonically with increasing number of quantization levels. This observation is further supported by experimental results.
Resumo:
It is shown that the use of a coarsely quantized binary digital hologram as a matched filter on an optical computer does not degrade signal-to-noise ratio (SNR) appreciably.
Resumo:
New experimental results to demonstrate that the annoying DC in the reconstructed wavefronts from in-line holograms could be successfully eliminated are presented in this paper. The complete elimination of DC has been achieved by making proper use of a Mach-Zehnder interferometer. The results for an in-line hololens and an in-line Fourier transform hologram are discussed.
Resumo:
This paper describes the application of lensless in-line digital holographic microscopy (DHM) to carry out thermo-mechanical characterization of microheaters fabricated through PolyMUMPs three-layer polysilicon surface micromachining process and subjected to a high thermal load. The mechanical deformation of the microheaters on the electrothermal excitation due to thermal stress is analyzed. The numerically reconstructed holographic images of the microheaters clearly indicate the regions under high stress. A double-exposure method has been used to obtain the quantitative measurements of the deformations, from the phase analysis of the hologram fringes. The measured deformations correlate well with the theoretical values predicted by a thermo-mechanical analytical model. The results show that lensless in-line DHM with Fourier analysis is an effective method for evaluating the thermo-mechanical characteristics of MEMS components.
Resumo:
An experimental study to ascertain the role of external electron donor in methylene blue sensitized dichromated gelatin (MBDCG) holograms has been carried out. The required volume holographic transmission gratings in MBDCG have been recorded using 633-nm light from a He-Ne laser. Three well-known electron donors, namely, N, N-dimethylformamide (DMF); ethylenediaminetetraacetic acid (EDTA); triethanolamine (TEA), were used in this study. The variation of diffraction efficiency (η) as a function of light exposure (E) and concentration (C) of the electron donor under consideration was chosen as the figure of merit for judging the role of external electron donor in MBDCG holograms. A self-consistent analysis of the experimental results was carried out by recalling the various known facts about the photochemistry and the hologram formation in DSDCG and also DCG. The important findings and conclusions are as follows: (i) Each η vs E graph is a bell-shaped curve and its peak height is influenced in a characteristic manner by the external electron donor used. (ii) High diffraction efficiency/recording speed can be achieved in pure MBDCG holograms. (iii) The diffraction efficiency/recording speed achieved in electron donor sensitized MBDCG holograms did not show any significant improvement at all over that observed in pure MBDCG holograms. (iv) In electron donor sensitized MBDCG holograms, the electron donor used, depending on its type and concentration, appears to promote the process of cross-linking of gelatin molecules in a manner to either retain or deteriorate the refractive-index modulation achieved using pure MBDCG.
Resumo:
New experimental results to demonstrate that the annoying DC in the reconstructed wavefronts from in-line holograms could be successfully eliminated are presented in this paper. The complete elimination of DC has been achieved by making proper use of a Mach-Zehnder interferometer. The results for an in-line hololens and an in-line Fourier transform hologram are discussed.
Resumo:
QSPR-malli kuvaa kvantitatiivista riippuvuutta muuttujien ja biologisen ominaisuuden välillä. Näin ollen QSPR mallit ovat käyttökelpoisia lääkekehityksen apuvälineitä. Kirjallisessa osassa kerrotaan sarveiskalvon, suoliston ja veriaivoesteen permeabiliteetin malleista. Useimmin käytettyjä muuttujia ovat yhdisteen rasvaliukoisuus, polaarinen pinta-ala, vetysidosten muodostuminen ja varaus. Myös yhdisteen koko vaikuttaa läpäisevyyteen, vaikka tutkimuksissa onkin erilaista tietoa tämän merkittävyydestä. Malliin vaikuttaa myös muiden kuin mallissa mukana olevien muuttujien suuruusluokka esimerkkinä Lipinskin ‖rule of 5‖ luokittelu. Tässä luokittelussa yhdisteen ominaisuus ei saa ylittää tiettyjä raja-arvoja. Muussa tapauksessa sen imeytyminen suun kautta otettuna todennäköisesti vaarantuu. Lisäksi kirjallisessa osassa tutustuttiin kuljetinproteiineihin ja niiden toimintaan silmän sarveiskalvossa, suolistossa ja veriaivoesteessä. Nykyisin on kehitetty erilaisia QSAR-malleja kuljetinproteiineille ennustamaan mahdollisten substraatittien tai inhibiittorien vuorovaikutuksia kuljetinproteiinin kanssa. Kokeellisen osan tarkoitus oli rakentaa in silico -malli sarveiskalvon passiiviselle permeabiliteetille. Työssä tehtiin QSPR-malli 54 yhdisteen ACDLabs-ohjelmalla laskettujen muuttujien arvojen avulla. Permeabiliteettikertoimien arvot saatiin kirjallisuudesta kanin sarveiskalvon läpäisevyystutkimuksista. Lopullisen mallin muuttujina käytettiin oktanoli-vesijakaantumiskerrointa (logD) pH:ssa 7,4 ja vetysidosatomien kokonaismäärää. Yhtälö oli muotoa log10(permeabiliteettikerroin) = -3,96791 - 0,177842Htotal + 0,311963logD(pH7,4). R2-korrelaatiokerroin oli 0,77 ja Q2-korrelaatiokerroin oli 0,75. Lopullisen mallin hyvyyttä arvioitiin 15 yhdisteen ulkoisella testijoukolla, jolloin ennustettua permeabiliteettia verrattiin kokeelliseen permeabiliteettiin. QSPR-malli arvioitiin myös farmakokineettisen simulaation avulla. Simulaatiossa laskettiin seitsemän yhdisteen kammionestepitoisuudet in vivo vakaassa tilassa käyttäen simulaatioissa QSPR mallilla ennustettuja permeabiliteettikertoimia. Lisäksi laskettiin sarveiskalvon imeytymisen nopeusvakio (Kc) 13 yhdisteelle farmakokineettisen simulaation avulla ja verrattiin tätä lopullisella mallilla ennustettuun permeabiliteettiin. Tulosten perusteella saatiin tilastollisesti hyvä QSPR-malli kuvaamaan sarveiskalvon passiivista permeabiliteettia, jolloin tätä mallia voidaan käyttää lääkekehityksen alkuvaiheessa. QSPR-malli ennusti permeabiliteettikertoimet hyvin, mikä nähtiin vertaamalla mallilla ennustettuja arvoja kokeellisiin tuloksiin. Lisäksi yhdisteiden kammionestepitoisuudet voitiin simuloida käyttäen apuna QSPR-mallilla ennustettuja permeabiliteettikertoimien arvoja.
Resumo:
A holographic optical element (HOE) based single-mode hybrid fiber optic interferometer for realizing the zero-order fringe is described. The HOE proposed and used integrates the actions of a beam combiner and a lens, and endows the interferometer with high tolerance for repositioning errors. The proposed method is simple and offers advantages such as the elimination of in situ processing for the hologram.
Resumo:
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America