1000 resultados para HAMILTONIAN-SYSTEMS
Resumo:
In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.
Resumo:
In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.
Resumo:
Non-linear effects are responsible for peculiar phenomena in charged particles dynamics in circular accelerators. Recently, they have been used to propose novel beam manipulations where one can modify the transverse beam distribution in a controlled way, to fulfil the constraints posed by new applications. One example is the resonant beam splitting used at CERN for the Multi-Turn Extraction (MTE), to transfer proton beams from PS to SPS. The theoretical description of these effects relies on the formulation of the particle's dynamics in terms of Hamiltonian systems and symplectic maps, and on the theory of adiabatic invariance and resonant separatrix crossing. Close to resonance, new stable regions and new separatrices appear in the phase space. As non-linear effects do not preserve the Courant-Snyder invariant, it is possible for a particle to cross a separatrix, changing the value of its adiabatic invariant. This process opens the path to new beam manipulations. This thesis deals with various possible effects that can be used to shape the transverse beam dynamics, using 2D and 4D models of particles' motion. We show the possibility of splitting a beam using a resonant external exciter, or combining its action with MTE-like tune modulation close to resonance. Non-linear effects can also be used to cool a beam acting on its transverse beam distribution. We discuss the case of an annular beam distribution, showing that emittance can be reduced modulating amplitude and frequency of a resonant oscillating dipole. We then consider 4D models where, close to resonance, motion in the two transverse planes is coupled. This is exploited to operate on the transverse emittances with a 2D resonance crossing. Depending on the resonance, the result is an emittance exchange between the two planes, or an emittance sharing. These phenomena are described and understood in terms of adiabatic invariance theory.
Resumo:
We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.
Resumo:
The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.
Resumo:
In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.
Resumo:
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
Resumo:
We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.
Resumo:
We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.
Resumo:
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.