85 resultados para Granitos anorogênicos
Resumo:
A practical approach to estimate rock thermal conductivities is to use rock models based just on the observed or expected rock mineral content. In this study, we evaluate the performances of the Krischer and Esdorn (KE), Hashin and Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric mean (GM) models in reproducing the measures of thermal conductivity of crystalline rocks.We used 1,105 samples of igneous and metamorphic rocks collected in outcroppings of the Borborema Province, Northeastern Brazil. Both thermal conductivity and petrographic modal analysis (percent volumes of quartz, K-feldspar, plagioclase, and sum of mafic minerals) were done. We divided the rocks into two groups: (a) igneous and ortho-derived (or meta-igneous) rocks and (b) metasedimentary rocks. The group of igneous and ortho-derived rocks (939 samples) covers most the lithologies de_ned in the Streckeisen diagram, with higher concentrations in the fields of granite, granodiorite, and tonalite. In the group of metasedimentary rocks (166 samples), it were sampled representative lithologies, usually of low to medium metamorphic grade. We treat the problem of reproducing the measured values of rock conductivity as an inverse problem where, besides the conductivity measurements, the volume fractions of the constituent minerals are known and the effective conductivities of the constituent minerals and model parameters are unknown. The key idea was to identify the model (and its associated estimates of effective mineral conductivities and parameters) that better reproduces the measures of rock conductivity. We evaluate the model performances by the quantity that is equal to the percentage of number of rock samples which estimated conductivities honor the measured conductivities within the tolerance of 15%. In general, for all models, the performances were quite inferior for the metasedimentary rocks (34% < < 65%) as compared with the igneous and ortho-derived rocks (51% < < 70%). For igneous and ortho-derived rocks, all model performances were very similar ( = 70%), except the GM-model that presented a poor performance (51% < < 65%); the KE and HS-models ( = 70%) were slightly superior than the CM and MW-models ( = 67%). The quartz content is the dominant factor in explaining the rock conductivity for igneous and ortho-derived rocks; in particular, using the MW-model the solution is in practice vi UFRN/CCET– Dissertação de mestrado the series association of the quartz content. On the other hand, for metasedimentary rocks, model performances were different and the performance of the KEmodel ( = 65%) was quite superior than the HS ( = 53%), CM (34% < < 42%), MW ( = 40%), and GM (35% < < 42%). The estimated effective mineral conductivities are stable for perturbations both in the rock conductivity measures and in the quartz volume fraction. The fact that the metasedimentary rocks are richer in platy-minerals explains partially the poor model performances, because both the high thermal anisotropy of biotite (one of the most common platy-mineral) and the difficulty in obtaining polished surfaces for measurement coupling when platyminerals are present. Independently of the rock type, both very low and very high values of rock conductivities are hardly explained by rock models based just on rock mineral content.
Resumo:
In States of Paraíba (PB) and Rio Grande do Norte (RN), northeast of Brazil, the most significant deposits of non-metallic industrial minerals are pegmatites, quartzites and granites, which are located in Seridó region. Extraction of clay, quartz, micas and feldspars occurs mainly in the cities of Várzea (PB), OuroBranco (RN) and Parelhas (RN). Mining companies working in the extraction and processing of quartzite generate large volumes of waste containing about 90% SiO2 in their chemical composition coming from quartz that is one of the basic constituents of ceramic mass for the production of ceramic coating. Therefore, this work evaluates the utilization of these wastes on fabrication of high-quality ceramic products, such as porcelain stoneware, in industrial scale. Characterization of raw materials was based on XRF, XRD, GA, TGA and DSC analysis, on samples composed by 57% of feldspar, 37% of argil and 6% of quartzite residues, with 5 different colors (white, gold, pink, green and black). Samples were synthesized in three temperatures, 1150°C, 1200°C and 1250°C, with one hour isotherm and warming-up tax of 10°C/min. After synthesizing, the specimens were submit to physical characterization tests of water absorption, linear shrinkage, apparently porosity, density, flexural strain at three points. The addition of 6% of quartzite residue to ceramic mass provided a final product with technological properties attending technical norms for the production of porcelain stoneware; best results were observed at a temperature of 1200°C. According to the results there was a high iron oxide on black quartzite, being their use in porcelain stoneware discarded by ethic and structural question, because the material fused at 1250°C. All quartzite formulations had low water absorption when synthesized at 1200°C, getting 0.1% to 0.36% without having gone through the atomization process. Besides, flexural strain tests overcame 27 MPa reaching the acceptance limits of the European Directive EN 100, at 1200°C synthesizing. Thus, the use of quartzite residues in ceramic masses poses as great potential for the production of porcelain stoneware.
Resumo:
The Dissertation aimed to advance the geological knowledge of the Barcelona Granitic Pluton (BGP). This body is located in the eastern portion of the Rio Grande do Norte Domain (RND), within the São José do Campestre subdomain (SJC), NE of the Borborema Province. The main goal was to understand the geological evolution of the rocks of the pluton and the tectonic setting of magma generation and its emplacement. The BGP has an assumed Ediacaran age and outcropping area of approximately 260 km2, being composed of three varied petrographic/textural facies: (a) porphyritic biotite monzogranite; (b) dykes and sheets of biotite microgranite; (c) dioritic to quartz-dioritic enclaves. The rocks of the BGP have the following structures: (i) a NE-SW and NW-SE directed magmatic fabric (Sγ), accompanied by a magmatic lineation (Lγ) with gentle dip to NE-SW and NW-SE. In the southern portion, there is the concentric pattern of this foliation with medium to high dip, and (ii) a solid state foliation, in part mylonitic (S3+), mainly on the eastern edge with slightly plunging to west. The integration of structural and gravity data permitted to interpret the emplacement of the BGP as controlled by the transcurrent shear zones systems Lajes Pintadas (LPSZ) and Sítio Novo (SNSZ), both of dextral strike-slip kinematics. Mineral chemistry data show that the amphibole form the porphyritic biotite monzogranite facies is hastingsite with moderate Mg / (Mg + Fe) ratios, indicating crystallization under moderate to high ƒO2 and cristallization pressure of around 5.0-6.0 kbar. The biotite tends to be slightly richer in annite molecule and plots in the transitional field from primary biotite to reequilibrated biotite. In discriminant diagrams of magmatic series, the biotite behave like those of subalkaline affinity, consistent with the potassium calc-alkaline / sub-alkaline geochemical affinity of the hosting rock. The opaque minerals are primarily magnetite, with some crystals martitized to hematite indicating relatively oxidizing conditions during magma evolution that originated the BGP. Zoning in plagioclase, K-feldspar and allanite crystals suggest fractional crystallization process. Lithogeochemical data suggest that the facies described for the BGP have similar magma source, usually plotting in the fields and trends of the subalkaline / high potassium calc-alkaline series.
Resumo:
The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.
Resumo:
The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.
Resumo:
The occurrence of hand grindstones at the Cogotas I archaeological sites is considered to be a common feature. Given that a distant-provenance raw material is frequently involved, determination of its source is a basic factor in the search for a better understanding of resource management and for any Political Economy approach. To progress in these directions an overall study should be planned, using selected grindstones with a view to covering diverse sub-zones of the Cogotas I dispersal area, especially because of its considerable distance from the granite basement source. Such a study may today includes diverse analytical procedures combining successive geographic, petrographic, mineralogical and geochemical criteria. To check the plausibility of the proposed methodology, a preliminary test has been carried out on two granite grindstones, obtained at the archaeological excavation at the Castronuño (Valladolid) Cogotian site, which is fifty km away from an inferred source area that was presumably located at Peñausende (Zamora). The result obtained validates the proposed operational process, yielding a generalizable knowledge to other similar situations.
Resumo:
Num contexto de urbanização, de acesa competitividade e desertificação do interior, assiste-se cada vez mais a cenários de concorrência entre territórios pela captação de recursos, investimentos, negócios e até visitantes e turistas, capazes de gerar dinâmicas positivas no território, palco deste movimento. Algumas projeções indiciam que o interior de Portugal terá, em 2040, cerca de um terço da população atual e, se a tendência de declínio demográfico se mantiver, em 90 anos o interior perderá 75 por cento da população. Neste contexto, o presente estudo tem por finalidade alertar os decisores políticos para o desenvolvimento de estratégias que possam atrair pessoas para o interior do país e estancar a sua desertificação. Para o efeito, o projeto que se apresenta vai procurar definir uma estratégia de marketing territorial para o concelho de Moimenta da Beira, tendo por base os seus produtos endógenos, como a maçã, o vinho, o mel, os enchidos, os granitos, o património religioso e cultural e, por fim, o património natural, como a Albufeira do Vilar e a Serra da Nave. Para a realização do referido estudo, foi seguida uma metodologia que teve por base uma revisão de literatura na área do marketing territorial, a análise de dados secundários e a realização de entrevistas aos principais Stakeholders da região. Os resultados deste estudo permitirão definir orientações para reforçar a atratividade e competitividade da oferta territorial junto dos segmentos alvo, ou seja, dos atuais e potenciais utilizadores do território.
Resumo:
Em 1997, um de nós (A.G.) detectou, em um sector da margem direita da pequena albufeira criada na ribeira da Fervença pela barragem de Vale Ressim, na encosta setentrional da Serra da Estrela, cerca de 1,2 km a NNE das Penhas Douradas, um grande machado semienterrado, denunciado pela coloração escura da rocha constituinte, que contrastava com a coloração esbranquiçada dos granitos correspondentes aos afloramentos observados na zona.
Resumo:
Apresenta-se uma metodologia para caracterizar a transmissividade dos Granitos Hercínicos e Metasedimentos do Complexo Xisto-Grauváquico do maciço envolvente e subjacente à antiga área mineira de urânio da Quinta do Bispo. Inicia-se com a modelação das litologias e grau de alteração a que se segue a simulação condicional da densidade de fracturação. No final, a densidade de fracturação é convertida num modelo 3D de transmissividade por relação com os resultados dos ensaios de bombagem. The purpose of this work is to present a methodology for characterizing the transmissivity of the Hercynian granites and complex schist–greywacke metasediment rocks surrounding and underlying the old Quinta do Bispo uranium mining site. The methodology encompasses modelling of lithologies and weathering levels, followed by a conditional simulation of fracture density. Fracture density is then converted into a 3D model of transmissivity via a relationship with pumping tests.
Resumo:
Considerando como caso de estudo o do maciço envolvente e subjacente à antiga mina de urânio de Quinta do Bispo (Concelho de Mangualde), composto essencialmente por granitos hercínicos e metasedimentos do Complexo Xisto-Grauváquico, estabeleceu-se uma metodologia que permitiu a construção de modelos 3D de transmissividade, equiprováveis, mediante o cruzamento de propriedades intrínsecas do maciço rochoso – neste caso particular, a litologia, o grau de alteração e a densidade de fracturação - passíveis de modelação estocástica a 3D, com propriedades hidrogeológicas do meio, medidas in situ e avaliadas deterministicamente, por via da realização e interpretação de ensaios de bombagem direcionados. A interpretação dos resultados dos ensaios de bombagem realizou-se por patamares, recorrendo-se aos métodos de “Porosidade Dupla” e de “Theis com correcção de Jacob”, tendo-se processado curvas cumulativas de valores de transmissividade em função da litologia e do grau de alteração, conforme os distintos sectores comportamentais do maciço. A metodologia adoptada levou a que os valores de transmissividade de cada célula dos modelos 3D tenham sido simulados com condicionamento aos valores experimentais dos ensaios de bombagem, ponderados de acordo com as probabilidades dessa mesma célula representar, numa dada localização no espaço, uma certa Litologia, sob um determinado Grau de Alteração que possui, quando aplicável, um certo Número de Fracturas não preenchidas. As variáveis representativas dos atributos geológicos Litologia, Grau de Alteração e Número de Fracturas, foram simuladas em cadeia pelo que os modelos de transmissividades integram a variabilidade e heterogeneidade locais destes atributos, os quais condicionam o fluxo tridimensional da água.