909 resultados para Gram-positive pathogens


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Investigar potenciales factores de riesgo asociados a infecciones por bacterias gram positivas vs. gram negativas en los pacientes con Neutropenia febril postquimioterapia. Diseño: Conducimos un estudio analítico de casos y controles basado en pacientes hospitalizados para identificar los factores de riesgo asociados a infecciones bacterianas entre pacientes con neutropenia febril. Se recolecto la información en un cuestionario diseñado para la investigación. Pacientes: Comparamos 65 casos infectados por gram positivos con 200 controles infectados por gram negativos hospitalizados con diagnostico de Neutropenia febril postquimioterapia. Análisis: Usamos el Odds Ratio como el resumen básico estadístico para calcular variaciones en el riesgo. Principales resultados: El análisis univariado mostro que lesiones en piel ( -OR 7,2; IC 95%: 2,89-17,9, p< 0,001) y uso de catéter central ( -OR 5,8; IC 95%: 2,0-16,8, p < 0,010) fueron asociados a infecciones por gram positivos. Conclusiones: Este estudio mostro que entre pacientes con Neutropenia febril postquimioterapia las lesiones en piel y uso de catéter central están asociados al desarrollo de infección por gram positivos. Palabras claves: Neutropenia febril; factores de riesgo; infecciones bacterianas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCCIÓN. La mediastinitis posterior a cirugía de revascularización miocárdica es una infección infrecuente, pero potencialmente fatal. En la Fundación Cardioinfantil se ha observado una tendencia al incremento de la misma en los últimos años, obligando a un cambio en las medidas de profilaxis antimicrobiana, pasando de cefalosporinas a vancomicina – gentamicina, sin embargo no se conoce aún el impacto de estas medidas. OBJETIVO: Determinar si el cambio de la profilaxis antibiótica en pacientes sometidos a revascularización miocárdica influye en una disminución de la incidencia de mediastinitis durante los años 2012 – 2013. METODOLOGÍA: Estudio de cohortes retrospectivo, evaluando la incidencia de mediastinitis post revascularización miocárdica, en pacientes expuestos a 2 diferentes tipos de profilaxis antimicrobiana (cefalosporinas vs vancomicina-gentamicina). Se describieron los patrones de susceptibilidad y resistencia de los patógenos encontrados en mediastinitis y la mortalidad de esta patología. RESULTADOS: Los patógenos más frecuentemente aislados en la mediastinitis fueron Staphylococcus aureus y Klebsiella pneumoniae, en la mayoría monomicrobiano. Se encontraron patógenos con perfiles de resistencia como betalactamasas de espectro extendido en Gram negativos y resistencia a la meticilina en cocos Gram positivos. El RR de mediastinitis del grupo expuesto a vancomicina-gentamicina respecto al grupo de cefalosporinas fue de 0,9 con IC 95% 0,28 – 3,28. CONCLUSIÓN: la epidemiologia microbiana de la mediastinitis no difiere de la reportada en otras series. La profilaxis antimicrobiana con vancomicina - gentamicina en pacientes sometidos a revascularización miocárdica, no redujo la incidencia de mediastinitis. Se propone regresar a la terapia de profilaxis con cefalosporinas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The CpxAR (Cpx) two-component regulator controls the expression of genes in response to a variety of environmental cues. The Cpx regulator has been implicated in the virulence of several gram-negative pathogens, although a role for Cpx in vivo has not been demonstrated directly. Here we investigate whether positive or negative control of gene expression by Cpx is important for the pathogenesis of Salmonella enterica serotype Typhimurium. The Cpx signal pathway in serotype Typhimurium was disrupted by insertional inactivation of the cpxA and cpxR genes. We also constitutively activated the Cpx pathway by making an internal in-frame deletion in cpxA (a cpxA* mutation). Activation of the Cpx pathway inhibited induction of the envelope stress response pathway controlled by the alternative sigma factor sigma(E) (encoded by rpoE). Conversely, the Cpx pathway was highly up-regulated (>40-fold) in a serotype Typhimurium rpoE mutant. The cpxA* mutation, but not the cpxA or the cpxR mutation, significantly reduced the capacity of serotype Typhimurium to adhere to and invade eucaryotic cells, although intracellular replication was not affected. The cpxA and cpxA* mutations significantly impaired the ability of serotype Typhimurium to grow in vivo in mice. To our knowledge, this is the first demonstration that the Cpx system is important for a bacterial pathogen in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To evaluate the effectiveness of the Gram stain in the initial diagnosis of the etiologic agent of peritonitis in continuous ambulatory peritoneal dialysis (CAPD). Design: Retrospective study analyzing the sensitivity (S), specificity (SS), positive predictive value (+PV), and negative predictive value (-PV) of the Gram stain relating to the results of cultures in 149 episodes of peritonitis in CAPD. The data were analyzed in two studies. In the first, only the cases with detection of a single agent by Gram stain were taken (Study 1). In the second, only the cases with two agents in Gram stain were evaluated (Study 2). Setting: Dialysis Unit and Laboratory of Microbiology of a tertiary medical center. Patients: Sixty-three patients on regular CAPD who presented one or more episodes of peritonitis from May 1992 to May 1995. Results: The positivity of Gram stain was 93.2% and the sensitivity was 95.7%. The values of S, SS, +PV, and -PV were respectively: 94.9%, 53.5%, 68.3%, and 90.9% for gram-positive cocci and 83.3%, 98.8%, 95.2%, and 95.6% for gram-negative bacilli. The association of gram-positive cocci plus gram-negative bacilli were predictive of growth of both in 6.8%, growth of gram-positive cocci in 13.7%, and growth of gram-negative bacilli in 72.5%. Conclusions: The Gram stain is a method of great value in the initial diagnosis of the etiologic agent of peritonitis in CAPD, especially for gram-negative bacilli.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Orbifloxacin is a third generation of fluoroquinolone that exhibits increased antibacterial activity against the Enterobacteriaceae, gram-negative and gram-positive bacteria, anaerobes, and mycobacteria. This drug was synthesized in 1987 and developed as a veterinary chemotherapeutic to use for livestock and domestic pets. Orbifloxacin is labeled for the treatment of skin, soft tissue, and urinary tract infections in dogs, and skin and soft tissue infections in cats, but in some countries, orbifloxacin has been given for the treatment of gastrointestinal and respiratory infections in cattle and swine and other animals. The in vitro activity and clinical efficacy of orbifloxacin against naturally occurring bacterial infections of the skin, ear, soft tissue, udder, and gastrointestinal and respiratory systems in different animals have been evaluated and good responses have been found. The minimum inhibitory concentration of orbifloxacin has been determined in various different pathogens and the results found in the literature are shown in this work. The pharmacokinetics of orbifloxacin has been evaluated by different routes of administration in goats, horses, pigs, rabbits, dogs, cats, camels, cattle, sheep, and fish. Orbifloxacin exhibits excellent pharmacokinetic parameters that suggest that this drug may have good clinical effects on various bacterial infections in these species. All methods described in the scientific literature for determination of orbifloxacin in different matrices were collected and discussed. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Enfermagem (mestrado profissional) - FMB

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Patients that are mechanically ventilated in ICUs are constantly exposed to different pathogens, which present multiantibiotic resistance. Among these microorganisms, is MRSA (Meticillin-Resistant Staphylococcus aureus) considered to be a therapeutic challenge due to its resistance to β-lactam antibiotics. Therefore, this study proposed to identify species of Staphylococcus spp. isolated from mechanically ventilated patients in ICU, the gene mecA detection and the genes of the enterotoxins A (sea), B (seb), C (sec-1) and D (sed) in samples of S. aureus, as well as the phenotypic resistance determination to oxacillin using the disc-diffusion method with discs of oxacillin and cefoxitin. The samples collection occurred during in a period of 19 months, obtaining samples from 232 patients. A percentage of 39% (70) of Gram-positive cocci were found; which 82,8% (58) were identified as Staphylococcus spp,. among these, 75,8% (44) corresponded to S. aureus species and 47,7% were identified as MRSA. It was found resistance to both drugs in 31,8% of the S. aureus samples, 16 (36,3%) had the gene sea and 11 (25%) had the sec-1 gene. Among the coagulase-negative staphylococci obtained, the species most found was S. epidermidis, corresponding to 43% (6). The results revealed that one of the most important etiologic agents of VAP amid the Gram-positive cocci is the species S. aureus, with special attention to MRSA. The presence of enterotoxins genes in S. aureus did not showed determinant role in VAP, but the presence of these superantigens can contribute worsening the patient’s prognosis, since they are associated with intense inflammatory response

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water disinfection usually requires expensive chemicals or equipment. Chlorination is a common disinfection method, although it is not able to inactivate all pathogens. High concentrations of residual chlorine also cause an unpleasant taste and smell in drinking water. As an alternative, photocatalysis and photoelectrochemical treatment has a high disinfection potential in drinking water by using solid catalysts, such as titanium dioxide. Highly reactive hydroxyl radical generated during the process serves as the main oxidant, capable of inactivating a wide range of microorganisms. In this study, we proposed a novel comparison between Gram-positive and gram-negative microorganisms. An immobilized TiO2 film promoted higher efficiency in water disinfection processes. The treatment effectively inactivated Escherichia coli and Staphylococcus aureus bacterial microorganisms in a shorter period than other alternative methods.