929 resultados para Genomic flexibility
Resumo:
Microsatellite instability (MSI) occurs in 10-20% of colorectal tumours and is associated with good prognosis. Here we describe the development and validation of a genomic signature that identifies colorectal cancer patients with MSI caused by DNA mismatch repair deficiency with high accuracy. Microsatellite status for 276 stage II and III colorectal tumours has been determined. Full-genome expression data was used to identify genes that correlate with MSI status. A subset of these samples (n = 73) had sequencing data for 615 genes available. An MSI gene signature of 64 genes was developed and validated in two independent validation sets: the first consisting of frozen samples from 132 stage II patients; and the second consisting of FFPE samples from the PETACC-3 trial (n = 625). The 64-gene MSI signature identified MSI patients in the first validation set with a sensitivity of 90.3% and an overall accuracy of 84.8%, with an AUC of 0.942 (95% CI, 0.888-0.975). In the second validation, the signature also showed excellent performance, with a sensitivity 94.3% and an overall accuracy of 90.6%, with an AUC of 0.965 (95% CI, 0.943-0.988). Besides correct identification of MSI patients, the gene signature identified a group of MSI-like patients that were MSS by standard assessment but MSI by signature assessment. The MSI-signature could be linked to a deficient MMR phenotype, as both MSI and MSI-like patients showed a high mutation frequency (8.2% and 6.4% of 615 genes assayed, respectively) as compared to patients classified as MSS (1.6% mutation frequency). The MSI signature showed prognostic power in stage II patients (n = 215) with a hazard ratio of 0.252 (p = 0.0145). Patients with an MSI-like phenotype had also an improved survival when compared to MSS patients. The MSI signature was translated to a diagnostic microarray and technically and clinically validated in FFPE and frozen samples.
Resumo:
BACKGROUND: The Nuclear Factor I (NFI) family of DNA binding proteins (also called CCAAT box transcription factors or CTF) is involved in both DNA replication and gene expression regulation. Using chromatin immuno-precipitation and high throughput sequencing (ChIP-Seq), we performed a genome-wide mapping of NFI DNA binding sites in primary mouse embryonic fibroblasts. RESULTS: We found that in vivo and in vitro NFI DNA binding specificities are indistinguishable, as in vivo ChIP-Seq NFI binding sites matched predictions based on previously established position weight matrix models of its in vitro binding specificity. Combining ChIP-Seq with mRNA profiling data, we found that NFI preferentially associates with highly expressed genes that it up-regulates, while binding sites were under-represented at expressed but unregulated genes. Genomic binding also correlated with markers of transcribed genes such as histone modifications H3K4me3 and H3K36me3, even outside of annotated transcribed loci, implying NFI in the control of the deposition of these modifications. Positional correlation between + and - strand ChIP-Seq tags revealed that, in contrast to other transcription factors, NFI associates with a nucleosomal length of cleavage-resistant DNA, suggesting an interaction with positioned nucleosomes. In addition, NFI binding prominently occurred at boundaries displaying discontinuities in histone modifications specific of expressed and silent chromatin, such as loci submitted to parental allele-specific imprinted expression. CONCLUSIONS: Our data thus suggest that NFI nucleosomal interaction may contribute to the partitioning of distinct chromatin domains and to epigenetic gene expression regulation.NFI ChIP-Seq and input control DNA data were deposited at Gene Expression Omnibus (GEO) repository under accession number GSE15844. Gene expression microarray data for mouse embryonic fibroblasts are on GEO accession number GSE15871.
Resumo:
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation of stimulated hypocotyls of dark-grown Arabidopsis (Arabidopsis thaliana) seedlings. We show that the modulation occurs through induction of the expression of the negative regulator of auxin signaling INDOLE-3-ACETIC ACID INDUCIBLE19/MASSUGU2. The biological significance of this regulatory mechanism involving GAs and auxin seems to be the maintenance of a high degree of flexibility in tropic responses. This notion is further supported by observations that GA-deficient seedlings showed a much lower variance in the response to gravity compared to wild-type seedlings and that the attenuation of gravitropism by GAs resulted in an increased phototropic response. This suggests that the interplay between auxin and GAs may be particularly important for plant orientation under competing tropic stimuli.
Resumo:
The extent of genomic variability of clones of Schistosoma mansoni obtained from field isolates was compared with that of strains that have been laboratory maintained. Analysis was undertaken using randomly amplified polymorphic dNAs (RAPDs) generated with three primers. Phenograms showing the similarity among the clones were constructed. The data showed that while the laboratory strain is highly homogeneous the clones derived from the field populations were highly variable with 43% of RAPDs exhibiting polymorphisms among 23 clones. Clones isolated from the same infected individual were always more closely grouped than clones from different individuals. The data clearly demonstrated that earlier analyses of the genomic variability in S. mansoni have underestimated this phenomenon due to the failure to examine field isolates
Resumo:
Especial conditions were developed for the amplification of five DNA segments from US region of BHV-1 by polymerase chain reaction. In order to eliminate most nonspecific products it was found that addition of three cosolvents DMSO, glycerol and NP 40 was a simple method for increasing the specificity of amplification.
Genomic rearrangements in trypanosomatids: an alternative to the "one gene" evolutionary hypotheses?
Resumo:
Most molecular trees of trypanosomatids are based on point mutations within DNA sequences. In contrast, there are very few evolutionary studies considering DNA (re) arrangement as genetic characters. Waiting for the completion of the various parasite genome projects, first information may already be obtained from chromosome size-polymorphism, using the appropriate algorithms for data processing. Three illustrative models are presented here. First, the case of Leishmania (Viannia) braziliensis/L. (V.) peruviana is described. Thanks to a fast evolution rate (due essentially to amplification/deletion of tandemly repeated genes), molecular karyotyping seems particularly appropriate for studying recent evolutionary divergence, including eco-geographical diversification. Secondly, karyotype evolution is considered at the level of whole genus Leishmania. Despite the fast chromosome evolution rate, there is qualitative congruence with MLEE- and RAPD-based evolutionary hypotheses. Significant differences may be observed between major lineages, likely corresponding to major and less frequent rearrangements (fusion/fission, translocation). Thirdly, comparison is made with Trypanosoma cruzi. Again congruence is observed with other hypotheses and major lineages are delineated by significant chromosome rearrangements. The level of karyotype polymorphism within that "species" is similar to the one observed in "genus" Leishmania. The relativity of the species concept among these two groups of parasites is discussed.
Resumo:
Summary For the nutritional management of bone health and the prevention of osteoporosis it is important to identify nutrients that positively influence the bone remodeling process at the cellular level. Soy isoflavones show promising osteoprotective effects in animals and humans but their mechanism of action in bone cells is yet poorly understood. Firstly, soy tissue cultures were characterized as a new and optimized source of isoflavones. A large variability in the isoflavone content was observed and high-producing strains (46.3 mg/g dry wt isoflavones) were identified. In the Ishikawa cells bioassay, the estrogenicity of isoflavones was confirmed to be 1000 to 10000 less than 17Mestradiol and that of the malonyl forms was shown for the first time (EC50 of 350 nM and 1880 nM for malonylgenistin and malonyldaidzin, respectively). The estrogenic activity of soya tissue culture extracts correlated to their isoflavone content. Secondly, the effects of phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway, as key mediators of bone formation, were investigated. Dietary achievable concentrations of genistein and daidzein (10vM), and statins (4xM) but not 17M estradiol (10nM), induced BMP-2 gene expression (by up to 3-fold) and inhibited the cholesterol biosynthetic pathway (by up to 50%) in the human osteoblastic cell line hP0B¬tert. In addition, several plant extracts (Cyperus rotundus, Lindera benzoin and Cnidium monnieri) induced BMP-2 gene expression but this induction was not restricted to the inhibition of the cholesterol synthesis pathway neither to the estrogenicity. Finally, the gene expression profiles during hP0B-tert differentiation induced by vitamin D and dexamethasone were analyzed with the Affymetrix human GeneChip. 1665 different genes and 98 ESTs were significantly regulated. The expression profiles of bone-related genes was largely in agreement with previously documented patterns, supporting the physiological relevance of the genomic results and the hP0B-tert cell line as a valid model of human osteoblast differentiation. The expression of alternative differentiation markers during the osteogenic treatment of hP0B-tert cells indicated that the adipocyte and myoblast differentiation pathways were repressed, confirming that these culture conditions allowed only osteoblast differentiation. The gene ontology analysis identified further sub-groups of genes that may be involved in the bone formation process. Aims of the thesis In order to define new strategies for the nutritional management of bone health and for the prevention of osteoporosis the major goal of the present work was to investigate the potential of phytonutrients to positively modulate the bone formation process at the cellular level and, in particular: 1.To select and optimise alternative plant sources containing high levels of isoflavones with estrogenic activity (Chapter 3). 2.To compare the effects of statins and phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway and to select new plant extracts with a bone anabolic potential (Chapter 4). 3.To further characterize the new human periosteal cell line, hP0B-tert, as a bone- formation model, by elucidating its gene expression profile during differentiation induced by vitamin D and dexamethasone (Chapter 5).
Resumo:
The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.
Resumo:
In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.
Resumo:
Expression of human leucocyte antigen (HLA) Class I molecules is essential for the recognition of malignant melanoma (MM) cells by CD8(+) T lymphocytes. A complete or partial loss of HLA Class I molecules is a potent strategy for MM cells to escape from immunosurveillance. In 2 out of 55 melanoma cell cultures we identified a complete phenotypic loss of HLA allospecificities. Both patients have been treated unsuccessfully with HLA-A2 peptides. To identify the reasons underlying the loss of single HLA-A allospecificities, we searched for genomic alterations at the locus for HLA Class I alpha-chain on chromosome 6 in melanoma cell cultures established from 2 selected patients with MM in advanced stage. This deficiency was associated with alterations of HLA-A2 gene sequences as determined by polymerase chain reaction-sequence specific primers (PCR-SSP). Karyotyping revealed a chromosomal loss in Patient 1, whereas melanoma cell cultures established from Patient 2 displayed 2 copies of chromosome 6. Loss of heterozygosity (LOH) using markers located around position 6p21 was detected in both cases. By applying group-specific primer-mixes spanning the 5'-flanking region of the HLA-A2 gene locus the relevant region was amplified by PCR and subsequent sequencing allowed alignment with the known HLA Class I reference sequences. Functional assays using HLA-A2-restricted cytotoxic T-cell clones were performed in HLA-A2 deficient MM cultures and revealed a drastically reduced susceptibility to CTL lysis in HLA-A2 negative cells. We could document the occurrence of selective HLA-A2 deficiencies in cultured advanced-stage melanoma metastases and identify their molecular causes as genomic alterations within the HLA-A gene locus.
Resumo:
DNA methylation has an important impact on normal cell physiology, thus any defects in this mechanism may be related to the development of various diseases In this project we are interested in identifying epigeneticaliy modified genes, in general controlled by processes related to the DNA methylation, by means of a new strategy combining protomic and genomic analyses. First, the two Dimensional-Difference Gel Electrophoresis (2-DIGE) protein analyses of extracts obtained from HCT-116 wt and double knockout for DNMT1 and DNMT3b (DKO) cells revealed 34 proteins overexpressed in the condition of DNMTs depletion. From five genes with higher transcript lavels in DKO cells, comparing with HCT-116 wt. oniy AKR1B1, UCHLl and VIM are melhylated in HCT-116. As expected. the DNA methvlation 1s lost in DKO cells. The rneth,vl ation of VIM and UCHLl promoters in some cancer samples has already been repaired, thus further studies has been focused on AKRlBI. AKR1B1 expression due lo DNA methyiaton of promoter region seems to occur specilfically in the colon cancer cell Iines. which was confirmed in the DNA rnethylation status and expression analyses. performed on 32 different cancer cell lines (including colon, breast, lymphoma, leukemia, neuroblastoma, glioma and lung cancer cell Iines) as well as normal colon and normal lymphocytes samples. AKRIBI expression after treatments with DNA demethvlating agent (AZA) was rescued in 5 coloncancer cell lines (including genetic regulation of the candidate gene. The methylation status of the rest of the genes identified in proteomic analysis was checked by methylation specific PCR (MSP) experiment and all appeared to be unmethylated. The similar research has been done also bv means of Mecp2-null mouse model For 14 selected candidate genes the analyses of expression leveis, methylation Status and MeCP2 interaction with promoters are currently being performed.
Resumo:
Samples containing highly unbalanced DNA mixtures from two individuals commonly occur both in forensic mixed stains and in peripheral blood DNA microchimerism induced by pregnancy or following organ transplant. Because of PCR amplification bias, the genetic identification of a DNA that contributes trace amounts to a mixed sample represents a tremendous challenge. This means that standard genetic markers, namely microsatellites, also referred as short tandem repeats (STR), and single-nucleotide polymorphism (SNP) have limited power in addressing common questions of forensic and medical genetics. To address this issue, we developed a molecular marker, named DIP-STR that relies on pairing deletion-insertion polymorphisms (DIP) with STR. This novel analytical approach allows for the unambiguous genotyping of a minor component in the presence of a major component, where DIP-STR genotypes of the minor were successfully procured at ratios up to 1:1,000. The compound nature of this marker generates a high level of polymorphism that is suitable for identity testing. Here, we demonstrate the power of the DIP-STR approach on an initial set of nine markers surveyed in a Swiss population. Finally, we discuss the limitations and potential applications of our new system including preliminary tests on clinical samples and estimates of their performance on simulated DNA mixtures.